jax.scipy.stats.betabinom.logpmf#
- jax.scipy.stats.betabinom.logpmf(k, n, a, b, loc=0)[source]#
Beta-binomial log probability mass function.
JAX implementation of
scipy.stats.betabinom
logpmf
The beta-binomial distribution’s probability mass function is defined as
\[f(k, n, a, b) = {n \choose k}\frac{B(k+a,n-k-b)}{B(a,b)}\]where \(B(a, b)\) is the
beta()
function. It is defined for \(n\ge 0\), \(a>0\), \(b>0\), and non-negative integers k.- Parameters:
k (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, value at which to evaluate the PMF
n (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution shape parameter
a (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution shape parameter
b (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution shape parameter
loc (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution offset parameter
- Returns:
array of logpmf values
- Return type:
See also