jax.scipy.stats.bernoulli.logpmf#
- jax.scipy.stats.bernoulli.logpmf(k, p, loc=0)[source]#
Bernoulli log probability mass function.
JAX implementation of
scipy.stats.bernoulli
logpmf
The Bernoulli probability mass function is defined as
\[\begin{split}f(k) = \begin{cases} 1 - p, & k = 0 \\ p, & k = 1 \\ 0, & \mathrm{otherwise} \end{cases}\end{split}\]- Parameters:
k (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, value at which to evaluate the PMF
p (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution shape parameter
loc (Array | ndarray | bool | number | bool | int | float | complex) – arraylike, distribution offset
- Returns:
array of logpmf values
- Return type: