jax.scipy.special.hyp1f1

Contents

jax.scipy.special.hyp1f1#

jax.scipy.special.hyp1f1 = <jax._src.custom_derivatives.custom_jvp object>[source]#

Confluent hypergeometric function 1F1.

LAX-backend implementation of scipy.special.hyp1f1().

The JAX version only accepts positive and real inputs. Values of a, b and x leading to high values of 1F1 might be erroneous, considering enabling double precision. Convention for a = b = 0 is 1, unlike in scipy’s implementation.

Original docstring below.

The confluent hypergeometric function is defined by the series

\[{}_1F_1(a; b; x) = \sum_{k = 0}^\infty \frac{(a)_k}{(b)_k k!} x^k.\]

See [dlmf] for more details. Here \((\cdot)_k\) is the Pochhammer symbol; see poch.

Parameters:
  • a (array_like) – Real parameters

  • b (array_like) – Real parameters

  • x (array_like) – Real or complex argument

Returns:

Values of the confluent hypergeometric function

Return type:

scalar or ndarray

References

[dlmf]

NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/13.2#E2