jax.numpy.sinh#
- jax.numpy.sinh(x, /)[source]#
Calculate element-wise hyperbolic sine of input.
JAX implementation of
numpy.sinh
.The hyperbolic sine is defined by:
\[sinh(x) = \frac{e^x - e^{-x}}{2}\]- Parameters:
x (ArrayLike) – input array or scalar.
- Returns:
An array containing the hyperbolic sine of each element of
x
, promoting to inexact dtype.- Return type:
Note
jnp.sinh
is equivalent to computing-1j * jnp.sin(1j * x)
.See also
jax.numpy.cosh()
: Computes the element-wise hyperbolic cosine of the input.jax.numpy.tanh()
: Computes the element-wise hyperbolic tangent of the input.jax.numpy.arcsinh()
: Computes the element-wise inverse of hyperbolic sine of the input.
Examples
>>> x = jnp.array([[-2, 3, 5], ... [0, -1, 4]]) >>> with jnp.printoptions(precision=3, suppress=True): ... jnp.sinh(x) Array([[-3.627, 10.018, 74.203], [ 0. , -1.175, 27.29 ]], dtype=float32) >>> with jnp.printoptions(precision=3, suppress=True): ... -1j * jnp.sin(1j * x) Array([[-3.627+0.j, 10.018-0.j, 74.203-0.j], [ 0. -0.j, -1.175+0.j, 27.29 -0.j]], dtype=complex64, weak_type=True)
For complex-valued input:
>>> with jnp.printoptions(precision=3, suppress=True): ... jnp.sinh(3-2j) Array(-4.169-9.154j, dtype=complex64, weak_type=True) >>> with jnp.printoptions(precision=3, suppress=True): ... -1j * jnp.sin(1j * (3-2j)) Array(-4.169-9.154j, dtype=complex64, weak_type=True)