jax.numpy.linalg.matmul

Contents

jax.numpy.linalg.matmul#

jax.numpy.linalg.matmul(x1, x2, /, *, precision=None, preferred_element_type=None)[source]#

Perform a matrix multiplication.

JAX implementation of numpy.linalg.matmul().

Parameters:
  • x1 (ArrayLike) – first input array, of shape (..., N).

  • x2 (ArrayLike) – second input array. Must have shape (N,) or (..., N, M). In the multi-dimensional case, leading dimensions must be broadcast-compatible with the leading dimensions of x1.

  • precision (PrecisionLike | None) – either None (default), which means the default precision for the backend, a Precision enum value (Precision.DEFAULT, Precision.HIGH or Precision.HIGHEST) or a tuple of two such values indicating precision of x1 and x2.

  • preferred_element_type (DTypeLike | None | None) – either None (default), which means the default accumulation type for the input types, or a datatype, indicating to accumulate results to and return a result with that datatype.

Returns:

array containing the matrix product of the inputs. Shape is x1.shape[:-1] if x2.ndim == 1, otherwise the shape is (..., M).

Return type:

Array

See also

jax.numpy.matmul(): NumPy API for this function. jax.numpy.linalg.vecdot(): batched vector product. jax.numpy.linalg.tensordot(): batched tensor product.

Examples

Vector dot products:

>>> x1 = jnp.array([1, 2, 3])
>>> x2 = jnp.array([4, 5, 6])
>>> jnp.linalg.matmul(x1, x2)
Array(32, dtype=int32)

Matrix dot product:

>>> x1 = jnp.array([[1, 2, 3],
...                 [4, 5, 6]])
>>> x2 = jnp.array([[1, 2],
...                 [3, 4],
...                 [5, 6]])
>>> jnp.linalg.matmul(x1, x2)
Array([[22, 28],
       [49, 64]], dtype=int32)

For convenience, in all cases you can do the same computation using the @ operator:

>>> x1 @ x2
Array([[22, 28],
       [49, 64]], dtype=int32)