jax.numpy.interp#
- jax.numpy.interp(x, xp, fp, left=None, right=None, period=None)[source]#
One-dimensional linear interpolation for monotonically increasing sample points.
LAX-backend implementation of
numpy.interp()
.Original docstring below.
Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp), evaluated at x.
- Parameters:
x (array_like) – The x-coordinates at which to evaluate the interpolated values.
xp (1-D sequence of floats) – The x-coordinates of the data points, must be increasing if argument period is not specified. Otherwise, xp is internally sorted after normalizing the periodic boundaries with
xp = xp % period
.fp (1-D sequence of float or complex) – The y-coordinates of the data points, same length as xp.
left (optional float or complex corresponding to fp) – Value to return for x < xp[0], default is fp[0].
right (optional float or complex corresponding to fp) – Value to return for x > xp[-1], default is fp[-1].
period (None or float, optional) – A period for the x-coordinates. This parameter allows the proper interpolation of angular x-coordinates. Parameters left and right are ignored if period is specified.
- Returns:
y – The interpolated values, same shape as x.
- Return type: