jax.numpy.correlate#

jax.numpy.correlate(a, v, mode='valid', *, precision=None)[source]#

Cross-correlation of two 1-dimensional sequences.

LAX-backend implementation of numpy.correlate().

In addition to the original NumPy arguments listed below, also supports precision for extra control over matrix-multiplication precision on supported devices. precision may be set to None, which means default precision for the backend, a Precision enum value (Precision.DEFAULT, Precision.HIGH or Precision.HIGHEST) or a tuple of two Precision enums indicating separate precision for each argument.

Original docstring below.

This function computes the correlation as generally defined in signal processing texts:

\[c_k = \sum_n a_{n+k} \cdot \overline{v_n}\]

with a and v sequences being zero-padded where necessary and \(\overline x\) denoting complex conjugation.

Parameters
  • a (array_like) – Input sequences.

  • v (array_like) – Input sequences.

  • mode ({'valid', 'same', 'full'}, optional) – Refer to the convolve docstring. Note that the default is β€˜valid’, unlike convolve, which uses β€˜full’.

  • precision (Union[None, str, Precision, Tuple[str, str], Tuple[Precision, Precision]]) –

Returns

out – Discrete cross-correlation of a and v.

Return type

ndarray