jax.numpy.c_#
- jax.numpy.c_ = <jax._src.numpy.index_tricks.CClass object>#
Concatenate slices, scalars and array-like objects along the last axis.
LAX-backend implementation of
numpy.c_
.See also
jnp.r_
: Concatenates slices, scalars and array-like objects along the first axis.Examples
>>> a = jnp.arange(6).reshape((2,3)) >>> jnp.c_[a,a] Array([[0, 1, 2, 0, 1, 2], [3, 4, 5, 3, 4, 5]], dtype=int32)
Use a string directive of the form
"axis:dims:trans1d"
as the first argument to specify concatenation axis, minimum number of dimensions, and the position of the upgraded array’s original dimensions in the resulting array’s shape tuple:>>> jnp.c_['0,2', [1,2,3], [4,5,6]] Array([[1], [2], [3], [4], [5], [6]], dtype=int32)
>>> jnp.c_['0,2,-1', [1,2,3], [4,5,6]] Array([[1, 2, 3], [4, 5, 6]], dtype=int32)
Use the special directives
"r"
or"c"
as the first argument on flat inputs to create an array with inputs stacked along the last axis:>>> jnp.c_['r',[1,2,3], [4,5,6]] Array([[1, 4], [2, 5], [3, 6]], dtype=int32)