jax.numpy.argsortÂ¶

jax.numpy.argsort(a, axis=-1, kind='quicksort', order=None)[source]Â¶

Returns the indices that would sort an array.

LAX-backend implementation of argsort(). Original docstring below.

Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an array of indices of the same shape as a that index data along the given axis in sorted order.

Parameters
• a (array_like) â€“ Array to sort.

• axis (int or None, optional) â€“ Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used.

• kind ({'quicksort', 'mergesort', 'heapsort', 'stable'}, optional) â€“ Sorting algorithm. The default is â€˜quicksortâ€™. Note that both â€˜stableâ€™ and â€˜mergesortâ€™ use timsort under the covers and, in general, the actual implementation will vary with data type. The â€˜mergesortâ€™ option is retained for backwards compatibility.

• order (str or list of str, optional) â€“ When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

Returns

index_array â€“ Array of indices that sort a along the specified axis. If a is one-dimensional, a[index_array] yields a sorted a. More generally, np.take_along_axis(a, index_array, axis=axis) always yields the sorted a, irrespective of dimensionality.

Return type

sort()

Describes sorting algorithms used.

lexsort()

Indirect stable sort with multiple keys.

ndarray.sort()

Inplace sort.

argpartition()

Indirect partial sort.

take_along_axis()

Apply index_array from argsort to an array as if by calling sort.

Notes

See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort order is documented in sort.

Examples

One dimensional array:

>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])


Two-dimensional array:

>>> x = np.array([[0, 3], [2, 2]])
>>> x
array([[0, 3],
[2, 2]])

>>> ind = np.argsort(x, axis=0)  # sorts along first axis (down)
>>> ind
array([[0, 1],
[1, 0]])
>>> np.take_along_axis(x, ind, axis=0)  # same as np.sort(x, axis=0)
array([[0, 2],
[2, 3]])

>>> ind = np.argsort(x, axis=1)  # sorts along last axis (across)
>>> ind
array([[0, 1],
[0, 1]])
>>> np.take_along_axis(x, ind, axis=1)  # same as np.sort(x, axis=1)
array([[0, 3],
[2, 2]])


Indices of the sorted elements of a N-dimensional array:

>>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
>>> ind
(array([0, 1, 1, 0]), array([0, 0, 1, 1]))
>>> x[ind]  # same as np.sort(x, axis=None)
array([0, 2, 2, 3])


Sorting with keys:

>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
>>> x
array([(1, 0), (0, 1)],
dtype=[('x', '<i4'), ('y', '<i4')])

>>> np.argsort(x, order=('x','y'))
array([1, 0])

>>> np.argsort(x, order=('y','x'))
array([0, 1])