jax.scipy.signal.correlate(in1, in2, mode='full', method='auto', precision=None)[source]ΒΆ

Cross-correlate two N-dimensional arrays.

LAX-backend implementation of correlate(). Original docstring below.

Cross-correlate in1 and in2, with the output size determined by the mode argument.

  • in1 (array_like) – First input.

  • in2 (array_like) – Second input. Should have the same number of dimensions as in1.

  • mode (str {'full', 'valid', 'same'}, optional) – A string indicating the size of the output:

  • method (str {'auto', 'direct', 'fft'}, optional) – A string indicating which method to use to calculate the correlation.


correlate – An N-dimensional array containing a subset of the discrete linear cross-correlation of in1 with in2.

Return type


See also


contains more documentation on method.


The correlation z of two d-dimensional arrays x and y is defined as:

z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l - k,...])

This way, if x and y are 1-D arrays and z = correlate(x, y, 'full') then

\[z[k] = (x * y)(k - N + 1) = \sum_{l=0}^{||x||-1}x_l y_{l-k+N-1}^{*}\]

for \(k = 0, 1, ..., ||x|| + ||y|| - 2\)

where \(||x||\) is the length of x, \(N = \max(||x||,||y||)\), and \(y_m\) is 0 when m is outside the range of y.

method='fft' only works for numerical arrays as it relies on fftconvolve. In certain cases (i.e., arrays of objects or when rounding integers can lose precision), method='direct' is always used.


Implement a matched filter using cross-correlation, to recover a signal that has passed through a noisy channel.

>>> from scipy import signal
>>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128)
>>> sig_noise = sig + np.random.randn(len(sig))
>>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128
>>> import matplotlib.pyplot as plt
>>> clock = np.arange(64, len(sig), 128)
>>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True)
>>> ax_orig.plot(sig)
>>> ax_orig.plot(clock, sig[clock], 'ro')
>>> ax_orig.set_title('Original signal')
>>> ax_noise.plot(sig_noise)
>>> ax_noise.set_title('Signal with noise')
>>> ax_corr.plot(corr)
>>> ax_corr.plot(clock, corr[clock], 'ro')
>>> ax_corr.axhline(0.5, ls=':')
>>> ax_corr.set_title('Cross-correlated with rectangular pulse')
>>> ax_orig.margins(0, 0.1)
>>> fig.tight_layout()
>>> fig.show()