jax.numpy.allclose(a, b, rtol=1e-05, atol=1e-08)[source]ΒΆ

Returns True if two arrays are element-wise equal within a tolerance.

LAX-backend implementation of allclose(). Original docstring below.

The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the absolute difference atol are added together to compare against the absolute difference between a and b.

NaNs are treated as equal if they are in the same place and if equal_nan=True. Infs are treated as equal if they are in the same place and of the same sign in both arrays.

  • b (a,) – Input arrays to compare.

  • rtol (float) – The relative tolerance parameter (see Notes).

  • atol (float) – The absolute tolerance parameter (see Notes).


allclose – Returns True if the two arrays are equal within the given tolerance; False otherwise.

Return type



If the following equation is element-wise True, then allclose returns True.

absolute(a - b) <= (atol + rtol * absolute(b))

The above equation is not symmetric in a and b, so that allclose(a, b) might be different from allclose(b, a) in some rare cases.

The comparison of a and b uses standard broadcasting, which means that a and b need not have the same shape in order for allclose(a, b) to evaluate to True. The same is true for equal but not array_equal.


>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8])
>>> np.allclose([1e10,1e-8], [1.00001e10,1e-9])
>>> np.allclose([1e10,1e-8], [1.0001e10,1e-9])
>>> np.allclose([1.0, np.nan], [1.0, np.nan])
>>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)