Source code for jax._src.mesh

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Definitions of Mesh and ResourceEnv."""

from __future__ import annotations

import collections
from collections.abc import Hashable, Sequence
import contextlib
import functools
import math
import threading
from typing import Any, NamedTuple

import numpy as np

from jax._src import config as jax_config
from jax._src import xla_bridge as xb
from jax._src import util
from jax._src.lib import xla_client as xc


MeshAxisName = Any
ResourceAxisName = Hashable

class Loop(NamedTuple):
  name: ResourceAxisName
  length: int


def show_axes(axes):
  return ", ".join(sorted(f"`{a}`" for a in axes))


class ResourceEnv(NamedTuple):
  physical_mesh: Mesh
  loops: tuple[Loop, ...]

  def with_mesh(self, mesh: Mesh):
    overlap = set(mesh.axis_names) & (self.resource_axes - set(self.physical_mesh.axis_names))
    if overlap:
      raise ValueError(f"Cannot update the mesh of the current resource "
                       f"environment. The new mesh shadows already defined axes "
                       f"{show_axes(overlap)}")
    return self._replace(physical_mesh=mesh)

  def with_extra_loop(self, loop: Loop):
    if loop.name in self.resource_axes:
      raise ValueError(f"Cannot extend the resource environment with loop named "
                       f"`{loop.name}`. An axis of this name is already defined!")
    return self._replace(loops=self.loops + (loop,))

  @property
  def physical_resource_axes(self) -> set[ResourceAxisName]:
    return set(self.physical_mesh.axis_names)

  @property
  def loop_resource_axes(self) -> set[ResourceAxisName]:
    return {loop.name for loop in self.loops}

  @property
  def resource_axes(self) -> set[ResourceAxisName]:
    return self.physical_resource_axes | self.loop_resource_axes

  @property
  def shape(self):
    shape = self.physical_mesh.shape
    shape.update(self.loops)
    return shape

  @property
  def local_shape(self):
    shape = self.physical_mesh.local_mesh.shape
    shape.update(self.loops)
    return shape

  def __repr__(self):
    mesh_repr = ", ".join(
        f"'{k}': {v}" for k, v in self.physical_mesh.shape.items())
    return f"ResourceEnv(mesh=Mesh({mesh_repr}), {self.loops!r})"


@functools.lru_cache(maxsize=128)
def _get_local_mesh(global_mesh: Mesh, process_index: int) -> Mesh:
  if global_mesh.empty:
      return global_mesh
  is_local_device = np.vectorize(
      lambda d: d.process_index == process_index, otypes=[bool])(global_mesh.devices)
  subcube_indices = []
  # We take the smallest slice of each dimension that doesn't skip any local device.
  for axis in range(global_mesh.devices.ndim):
    other_axes = util.tuple_delete(tuple(range(global_mesh.devices.ndim)), axis)
    # NOTE: This re-reduces over many axes multiple times, so we could definitely
    #       optimize it, but I hope it won't be a bottleneck anytime soon.
    local_slices = is_local_device.any(other_axes, keepdims=False)
    nonzero_indices = np.flatnonzero(local_slices)
    start, end = int(np.min(nonzero_indices)), int(np.max(nonzero_indices))
    subcube_indices.append(slice(start, end + 1))
  subcube_indices_tuple = tuple(subcube_indices)
  # We only end up with all conditions being true if the local devices formed a
  # subcube of the full array. This is because we were biased towards taking a
  # "hull" spanned by the devices, and in case the local devices don't form a
  # subcube that hull will contain non-local devices.
  if not is_local_device[subcube_indices_tuple].all():
    raise ValueError(
        "When passing host local inputs to pjit or xmap, devices "
        "connected to a single host must form a contiguous subcube of the "
        "global device mesh")
  return Mesh(global_mesh.devices[subcube_indices_tuple], global_mesh.axis_names)


_mesh_object_dict = {}  # type: ignore


[docs] class Mesh(contextlib.ContextDecorator): """Declare the hardware resources available in the scope of this manager. In particular, all ``axis_names`` become valid resource names inside the managed block and can be used e.g. in the ``in_axis_resources`` argument of :py:func:`jax.experimental.pjit.pjit`. Also see JAX's multi-process programming model (https://jax.readthedocs.io/en/latest/multi_process.html) and the Distributed arrays and automatic parallelization tutorial (https://jax.readthedocs.io/en/latest/notebooks/Distributed_arrays_and_automatic_parallelization.html) If you are compiling in multiple threads, make sure that the ``with Mesh`` context manager is inside the function that the threads will execute. Args: devices: A NumPy ndarray object containing JAX device objects (as obtained e.g. from :py:func:`jax.devices`). axis_names: A sequence of resource axis names to be assigned to the dimensions of the ``devices`` argument. Its length should match the rank of ``devices``. Example: >>> from jax.experimental.pjit import pjit >>> from jax.sharding import Mesh >>> from jax.sharding import PartitionSpec as P >>> import numpy as np ... >>> inp = np.arange(16).reshape((8, 2)) >>> devices = np.array(jax.devices()).reshape(4, 2) ... >>> # Declare a 2D mesh with axes `x` and `y`. >>> global_mesh = Mesh(devices, ('x', 'y')) >>> # Use the mesh object directly as a context manager. >>> with global_mesh: ... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp) >>> # Initialize the Mesh and use the mesh as the context manager. >>> with Mesh(devices, ('x', 'y')) as global_mesh: ... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp) >>> # Also you can use it as `with ... as ...`. >>> global_mesh = Mesh(devices, ('x', 'y')) >>> with global_mesh as m: ... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp) >>> # You can also use it as `with Mesh(...)`. >>> with Mesh(devices, ('x', 'y')): ... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp) """ devices: np.ndarray axis_names: tuple[MeshAxisName, ...] def __new__(cls, devices: np.ndarray | Sequence[xc.Device], axis_names: str | Sequence[MeshAxisName]): if not isinstance(devices, np.ndarray): devices = np.array(devices) if isinstance(axis_names, str): axis_names = (axis_names,) axis_names = tuple(axis_names) if devices.ndim != len(axis_names): raise ValueError( "Mesh requires the ndim of its first argument (`devices`) to equal " "the length of its second argument (`axis_names`), but got " f"devices.ndim == {devices.ndim} and " f"len(axis_names) == {len(axis_names)}.") key = (axis_names, devices.shape, tuple(devices.flat)) val = _mesh_object_dict.get(key, None) if val is not None: return val self = super().__new__(cls) self.devices = devices.copy() self.devices.flags.writeable = False self.axis_names = axis_names _mesh_object_dict[key] = self return self def __reduce__(self): return (type(self), (self.devices, self.axis_names)) def __eq__(self, other): if not isinstance(other, Mesh): return False # This is a performance optimization. Comparing thousands of devices # can be expensive. if id(self) == id(other): return True return (self.axis_names == other.axis_names and self.devices.shape == other.devices.shape and self._internal_device_list == other._internal_device_list) def __hash__(self): if not hasattr(self, '_hash'): self._hash = hash( (self.axis_names, self._internal_device_list, self.devices.shape)) return self._hash def __setattr__(self, name, value): if hasattr(self, name): if getattr(self, name) == value: # This can to happen if two threads race, for example if two threads # are trying to hash the same Mesh instance. return raise RuntimeError( f"Cannot reassign attributes ({name}) of immutable mesh objects" ) super().__setattr__(name, value) def __enter__(self): new_env = thread_resources.stack[-1].with_mesh(self) thread_resources.stack.append(new_env) thread_resources.env = new_env jax_config.update_thread_local_jit_state( mesh_context_manager=tuple(t.physical_mesh for t in thread_resources.stack if not t.physical_mesh.empty)) return self def __exit__(self, exc_type, exc_value, traceback): thread_resources.stack.pop() thread_resources.env = thread_resources.stack[-1] jax_config.update_thread_local_jit_state( mesh_context_manager=tuple(t.physical_mesh for t in thread_resources.stack if not t.physical_mesh.empty)) return False @property def shape(self): return collections.OrderedDict( (name, size) for name, size in util.safe_zip(self.axis_names, self.devices.shape)) @property def size(self): return math.prod(self.shape.values()) @property def empty(self): return self.devices.ndim == 0 @functools.cached_property def is_multi_process(self): return self.devices.size != len(self.local_devices) @property def local_mesh(self): return self._local_mesh(xb.process_index()) def _local_mesh(self, process_index): return _get_local_mesh(self, process_index) @functools.cached_property def device_ids(self): assert not self.empty return np.vectorize(lambda d: d.id, otypes=[int])(self.devices) @functools.cached_property def _local_devices_set(self): return set(self.local_devices) @functools.cached_property def _flat_devices_tuple(self): return tuple(self.devices.flat) @functools.cached_property def _internal_device_list(self): return xc.DeviceList(self._flat_devices_tuple) @functools.cached_property def _flat_devices_set(self): return set(self.devices.flat) def __str__(self): mesh_str = ", ".join(f"'{k}': {v}" for k, v in self.shape.items()) return f"Mesh({mesh_str})" @functools.cached_property def _repr(self): if self.empty: return "Mesh(device_ids=[], axis_names=())" return f"Mesh(device_ids={self.device_ids!r}, axis_names={self.axis_names!r})" def __repr__(self): return self._repr @functools.cached_property def local_devices(self): return [d for d in self.devices.flat if d.process_index == d.client.process_index()]
EMPTY_ENV = ResourceEnv(Mesh(np.empty((), dtype=object), ()), ()) class _ThreadResourcesLocalState(threading.local): def __init__(self): self.stack = [EMPTY_ENV] self.env = self.stack[-1] thread_resources = _ThreadResourcesLocalState()