Source code for jax._src.lax.parallel

# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Parallelization primitives.
"""

from __future__ import annotations

from collections.abc import Sequence
from functools import partial
import itertools
import math
import string

from jax import tree_util
from jax._src import core
from jax._src import dtypes
from jax._src import sharding_impls
from jax._src import util
from jax._src.core import AxisName, ShapedArray, raise_to_shaped
from jax._src.interpreters import ad
from jax._src.interpreters import batching
from jax._src.interpreters import mlir
from jax._src.interpreters import pxla
from jax._src.lax import lax
from jax._src.lax import slicing
from jax._src.lib.mlir import ir
from jax._src.lib.mlir.dialects import hlo
from jax._src.numpy import lax_numpy
from jax._src.util import (canonicalize_axis, moveaxis, safe_map, safe_zip,
                           unzip2)
import numpy as np

unsafe_map, map = map, safe_map  # type: ignore


### parallel traceables

[docs] def psum(x, axis_name, *, axis_index_groups=None): """Compute an all-reduce sum on ``x`` over the pmapped axis ``axis_name``. If ``x`` is a pytree then the result is equivalent to mapping this function to each leaf in the tree. Inputs of boolean dtype are converted to integers before the reduction. Args: x: array(s) with a mapped axis named ``axis_name``. axis_name: hashable Python object used to name a pmapped axis (see the :func:`jax.pmap` documentation for more details). axis_index_groups: optional list of lists containing axis indices (e.g. for an axis of size 4, [[0, 1], [2, 3]] would perform psums over the first two and last two replicas). Groups must cover all axis indices exactly once. Returns: Array(s) with the same shape as ``x`` representing the result of an all-reduce sum along the axis ``axis_name``. Examples: For example, with 4 XLA devices available: >>> x = np.arange(4) >>> y = jax.pmap(lambda x: jax.lax.psum(x, 'i'), axis_name='i')(x) >>> print(y) [6 6 6 6] >>> y = jax.pmap(lambda x: x / jax.lax.psum(x, 'i'), axis_name='i')(x) >>> print(y) [0. 0.16666667 0.33333334 0.5 ] Suppose we want to perform ``psum`` among two groups, one with ``device0`` and ``device1``, the other with ``device2`` and ``device3``, >>> y = jax.pmap(lambda x: jax.lax.psum(x, 'i', axis_index_groups=[[0, 1], [2, 3]]), axis_name='i')(x) >>> print(y) [1 1 5 5] An example using 2D-shaped x. Each row is data from one device. >>> x = np.arange(16).reshape(4, 4) >>> print(x) [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] Full ``psum`` across all devices: >>> y = jax.pmap(lambda x: jax.lax.psum(x, 'i'), axis_name='i')(x) >>> print(y) [[24 28 32 36] [24 28 32 36] [24 28 32 36] [24 28 32 36]] Perform ``psum`` among two groups: >>> y = jax.pmap(lambda x: jax.lax.psum(x, 'i', axis_index_groups=[[0, 1], [2, 3]]), axis_name='i')(x) >>> print(y) [[ 4 6 8 10] [ 4 6 8 10] [20 22 24 26] [20 22 24 26]] """ if not isinstance(axis_name, (tuple, list)): axis_name = (axis_name,) if any(isinstance(axis, int) for axis in axis_name) and axis_index_groups is not None: raise ValueError("axis_index_groups only supported for sums over just named axes") _validate_reduce_axis_index_groups(axis_index_groups) leaves, treedef = tree_util.tree_flatten(x) leaves = [lax.convert_element_type(l, np.int32) if dtypes.dtype(l) == np.bool_ else l for l in leaves] axis_index_groups = _canonicalize_axis_index_groups(axis_index_groups) out_flat = psum_p.bind( *leaves, axes=tuple(axis_name), axis_index_groups=axis_index_groups) return tree_util.tree_unflatten(treedef, out_flat)
[docs] def pmean(x, axis_name, *, axis_index_groups=None): """Compute an all-reduce mean on ``x`` over the pmapped axis ``axis_name``. If ``x`` is a pytree then the result is equivalent to mapping this function to each leaf in the tree. Args: x: array(s) with a mapped axis named ``axis_name``. axis_name: hashable Python object used to name a pmapped axis (see the :func:`jax.pmap` documentation for more details). axis_index_groups: optional list of lists containing axis indices (e.g. for an axis of size 4, [[0, 1], [2, 3]] would perform pmeans over the first two and last two replicas). Groups must cover all axis indices exactly once, and on TPUs all groups must be the same size. Returns: Array(s) with the same shape as ``x`` representing the result of an all-reduce mean along the axis ``axis_name``. For example, with 4 XLA devices available: >>> x = np.arange(4) >>> y = jax.pmap(lambda x: jax.lax.pmean(x, 'i'), axis_name='i')(x) >>> print(y) [1.5 1.5 1.5 1.5] >>> y = jax.pmap(lambda x: x / jax.lax.pmean(x, 'i'), axis_name='i')(x) >>> print(y) [0. 0.6666667 1.3333334 2. ] """ x = psum(x, axis_name=axis_name, axis_index_groups=axis_index_groups) n = psum(1, axis_name=axis_name, axis_index_groups=axis_index_groups) return tree_util.tree_map(lambda v: v / n, x)
[docs] def pmax(x, axis_name, *, axis_index_groups=None): """Compute an all-reduce max on ``x`` over the pmapped axis ``axis_name``. If ``x`` is a pytree then the result is equivalent to mapping this function to each leaf in the tree. Args: x: array(s) with a mapped axis named ``axis_name``. axis_name: hashable Python object used to name a pmapped axis (see the :func:`jax.pmap` documentation for more details). axis_index_groups: optional list of lists containing axis indices (e.g. for an axis of size 4, [[0, 1], [2, 3]] would perform pmaxes over the first two and last two replicas). Groups must cover all axis indices exactly once, and on TPUs all groups must be the same size. Returns: Array(s) with the same shape as ``x`` representing the result of an all-reduce max along the axis ``axis_name``. """ if not isinstance(axis_name, (tuple, list)): axis_name = (axis_name,) if any(isinstance(axis, int) for axis in axis_name) and axis_index_groups is not None: raise ValueError("axis_index_groups only supported for sums over just named axes") _validate_reduce_axis_index_groups(axis_index_groups) leaves, treedef = tree_util.tree_flatten(x) axis_index_groups = _canonicalize_axis_index_groups(axis_index_groups) out_flat = pmax_p.bind(*leaves, axes=axis_name, axis_index_groups=axis_index_groups) return tree_util.tree_unflatten(treedef, out_flat)
[docs] def pmin(x, axis_name, *, axis_index_groups=None): """Compute an all-reduce min on ``x`` over the pmapped axis ``axis_name``. If ``x`` is a pytree then the result is equivalent to mapping this function to each leaf in the tree. Args: x: array(s) with a mapped axis named ``axis_name``. axis_name: hashable Python object used to name a pmapped axis (see the :func:`jax.pmap` documentation for more details). axis_index_groups: optional list of lists containing axis indices (e.g. for an axis of size 4, [[0, 1], [2, 3]] would perform pmins over the first two and last two replicas). Groups must cover all axis indices exactly once, and on TPUs all groups must be the same size. Returns: Array(s) with the same shape as ``x`` representing the result of an all-reduce min along the axis ``axis_name``. """ if not isinstance(axis_name, (tuple, list)): axis_name = (axis_name,) if any(isinstance(axis, int) for axis in axis_name) and axis_index_groups is not None: raise ValueError("axis_index_groups only supported for sums over just named axes") _validate_reduce_axis_index_groups(axis_index_groups) leaves, treedef = tree_util.tree_flatten(x) axis_index_groups = _canonicalize_axis_index_groups(axis_index_groups) out_flat = pmin_p.bind(*leaves, axes=axis_name, axis_index_groups=axis_index_groups) return tree_util.tree_unflatten(treedef, out_flat)
# TODO(mattjj): add a pargmin_p, or add named axis support to lax.argmin_p def pargmin(x, axis_name): if isinstance(axis_name, (tuple, list)): raise TypeError(f"pargmin only accepts a single axis, got {axis_name}") return _axis_index_of_val(x, pmin(x, axis_name), axis_name) # TODO(mattjj): add a pargmax_p, or add named axis support to lax.argmax_p def pargmax(x, axis_name): if isinstance(axis_name, (tuple, list)): raise TypeError(f"pargmin only accepts a single axis, got {axis_name}") return _axis_index_of_val(x, pmax(x, axis_name), axis_name) def _axis_index_of_val(x, val, axis_name): idx = axis_index(axis_name) validx = lax_numpy.where(val == x, idx, dtypes.iinfo(dtypes.dtype(idx)).max) return pmin(validx, axis_name) def _validate_reduce_axis_index_groups(axis_index_groups): if axis_index_groups is None: return axis_space = range(sum(len(group) for group in axis_index_groups)) if {i for g in axis_index_groups for i in g} != set(axis_space): raise ValueError("axis_index_groups must cover all indices exactly once") def _canonicalize_axis_index_groups(axis_index_groups): if axis_index_groups is None: return return tuple(map(tuple, axis_index_groups)) def pbroadcast(x, axis_name, source): """Perform a collective broadcast and replicate from ``source``. This is equivalent to ``` def pbroadcast(x, axis_name, source): masked = jnp.where(axis_index(axis_name) == source, x, zeros_like(x)) return psum(masked, axis_name) ``` but implemented in a hardware optimized way. If ``x`` is a pytree then the result is equivalent to mapping this function to each leaf in the tree. This function is an analog of the CollectiveBroadcast HLO. Args: x: array(s) with a mapped axis named ``axis_name``. axis_name: hashable Python object used to name a pmapped axis (see the :func:`jax.pmap` documentation for more details). source: int, representing which index into ``axis_name`` that should be copied. Returns: Array(s) with ``x`` being copied from the ``source`` index slice of ``axis_name``. """ return tree_util.tree_map( partial(pbroadcast_p.bind, axis_name=axis_name, source=source), x)
[docs] def ppermute(x, axis_name, perm): """Perform a collective permutation according to the permutation ``perm``. If ``x`` is a pytree then the result is equivalent to mapping this function to each leaf in the tree. This function is an analog of the CollectivePermute HLO. Args: x: array(s) with a mapped axis named ``axis_name``. axis_name: hashable Python object used to name a pmapped axis (see the :func:`jax.pmap` documentation for more details). perm: list of pairs of ints, representing ``(source_index, destination_index)`` pairs that encode how the mapped axis named ``axis_name`` should be shuffled. The integer values are treated as indices into the mapped axis ``axis_name``. Any two pairs should not have the same source index or the same destination index. For each index of the axis ``axis_name`` that does not correspond to a destination index in ``perm``, the corresponding values in the result are filled with zeros of the appropriate type. Returns: Array(s) with the same shape as ``x`` with slices along the axis ``axis_name`` gathered from ``x`` according to the permutation ``perm``. """ return tree_util.tree_map( partial(ppermute_p.bind, axis_name=axis_name, perm=tuple(map(tuple, perm))), x)
[docs] def pshuffle(x, axis_name, perm): """Convenience wrapper of jax.lax.ppermute with alternate permutation encoding If ``x`` is a pytree then the result is equivalent to mapping this function to each leaf in the tree. Args: x: array(s) with a mapped axis named ``axis_name``. axis_name: hashable Python object used to name a pmapped axis (see the :func:`jax.pmap` documentation for more details). perm: list of ints encoding sources for the permutation to be applied to the axis named ``axis_name``, so that the output at axis index i comes from the input at axis index perm[i]. Every integer in [0, N) should be included exactly once for axis size N. Returns: Array(s) with the same shape as ``x`` with slices along the axis ``axis_name`` gathered from ``x`` according to the permutation ``perm``. """ if set(perm) != set(range(len(perm))): raise ValueError(f"`perm` does not represent a permutation: {perm}") return ppermute(x, axis_name, list(zip(perm, range(len(perm)))))
[docs] def pswapaxes(x, axis_name, axis, *, axis_index_groups=None): """Swap the pmapped axis ``axis_name`` with the unmapped axis ``axis``. If ``x`` is a pytree then the result is equivalent to mapping this function to each leaf in the tree. The group size of the mapped axis size must be equal to the size of the unmapped axis; that is, we must have ``lax.psum(1, axis_name, axis_index_groups=axis_index_groups) == x.shape[axis]``. By default, when ``axis_index_groups=None``, this encompasses all the devices. This function is a special case of ``all_to_all`` where the pmapped axis of the input is placed at the position ``axis`` in the output. That is, it is equivalent to ``all_to_all(x, axis_name, axis, axis)``. Args: x: array(s) with a mapped axis named ``axis_name``. axis_name: hashable Python object used to name a pmapped axis (see the :func:`jax.pmap` documentation for more details). axis: int indicating the unmapped axis of ``x`` to map with the name ``axis_name``. axis_index_groups: optional list of lists containing axis indices (e.g. for an axis of size 4, [[0, 1], [2, 3]] would run pswapaxes over the first two and last two replicas). Groups must cover all axis indices exactly once, and all groups must be the same size. Returns: Array(s) with the same shape as ``x``. """ return all_to_all(x, axis_name, axis, axis, axis_index_groups=axis_index_groups)
[docs] def all_to_all(x, axis_name, split_axis, concat_axis, *, axis_index_groups=None, tiled=False): """Materialize the mapped axis and map a different axis. If ``x`` is a pytree then the result is equivalent to mapping this function to each leaf in the tree. In the output, the input mapped axis ``axis_name`` is materialized at the logical axis position ``concat_axis``, and the input unmapped axis at position ``split_axis`` is mapped with the name ``axis_name``. The group size of the mapped axis size must be equal to the size of the unmapped axis; that is, we must have ``lax.psum(1, axis_name, axis_index_groups=axis_index_groups) == x.shape[axis]``. By default, when ``axis_index_groups=None``, this encompasses all the devices. Args: x: array(s) with a mapped axis named ``axis_name``. axis_name: hashable Python object used to name a pmapped axis (see the :func:`jax.pmap` documentation for more details). split_axis: int indicating the unmapped axis of ``x`` to map with the name ``axis_name``. concat_axis: int indicating the position in the output to materialize the mapped axis of the input with the name ``axis_name``. axis_index_groups: optional list of lists containing axis indices (e.g. for an axis of size 4, [[0, 1], [2, 3]] would run all_to_all over the first two and last two replicas). Groups must cover all axis indices exactly once, and all groups must be the same size. tiled: when True, all_to_all will divide split_axis into chunks and concatenate them along concat_axis. In particular, no dimensions are added or removed. False by default. Returns: When tiled is False, array(s) with shape given by the expression:: np.insert(np.delete(x.shape, split_axis), concat_axis, axis_size) where ``axis_size`` is the size of the mapped axis named ``axis_name`` in the input ``x``, i.e. ``axis_size = lax.psum(1, axis_name)``. Otherwise array with shape similar to the input shape, except with split_axis divided by axis size and concat_axis multiplied by axis size. """ axis_index_groups = _canonicalize_axis_index_groups(axis_index_groups) def bind(x, split_axis=split_axis, concat_axis=concat_axis): group_size = psum(1, axis_name, axis_index_groups=axis_index_groups) if tiled: if x.shape[split_axis] % group_size != 0: raise ValueError(f"The size of all_to_all split_axis ({x.shape[split_axis]}) " f"has to be divisible by the size of the named axis " f"{axis_name} ({group_size})") else: if group_size != x.shape[split_axis]: msg = ("all_to_all requires the size of the mapped axis axis_name to " "equal x.shape[split_axis], but they are {} and {} respectively.") raise ValueError(msg.format(group_size, x.shape[split_axis])) if split_axis < concat_axis: concat_axis += 1 # concat_axis gives a position _after_ split_axis is removed x = lax.expand_dims(x, (concat_axis,)) # insert the new axis elif split_axis == concat_axis: pass else: # concat_axis < split_axis x = lax.expand_dims(x, (concat_axis,)) # insert the new axis split_axis += 1 # we have a new axis before split_axis now result = all_to_all_p.bind(x, split_axis=split_axis, concat_axis=concat_axis, axis_name=axis_name, axis_index_groups=axis_index_groups, tiled=tiled) if not tiled and split_axis != concat_axis: result = lax.squeeze(result, (split_axis,)) return result return tree_util.tree_map(bind, x)
[docs] def axis_index(axis_name): """Return the index along the mapped axis ``axis_name``. Args: axis_name: hashable Python object used to name the mapped axis. Returns: An integer representing the index. For example, with 8 XLA devices available: >>> from functools import partial >>> @partial(jax.pmap, axis_name='i') ... def f(_): ... return lax.axis_index('i') ... >>> f(np.zeros(4)) Array([0, 1, 2, 3], dtype=int32) >>> f(np.zeros(8)) Array([0, 1, 2, 3, 4, 5, 6, 7], dtype=int32) >>> @partial(jax.pmap, axis_name='i') ... @partial(jax.pmap, axis_name='j') ... def f(_): ... return lax.axis_index('i'), lax.axis_index('j') ... >>> x, y = f(np.zeros((4, 2))) >>> print(x) [[0 0] [1 1] [2 2] [3 3]] >>> print(y) [[0 1] [0 1] [0 1] [0 1]] """ return axis_index_p.bind(axis_name=axis_name)
[docs] def pdot(x, y, axis_name, pos_contract=((), ()), pos_batch=((), ()), precision=None): if not isinstance(axis_name, (list, tuple)): axis_name = (axis_name,) pos_contract = tuple(map(tuple, pos_contract)) pos_batch = tuple(map(tuple, pos_batch)) return pdot_p.bind(x, y, axis_name=tuple(axis_name), pos_contract=pos_contract, pos_batch=pos_batch, precision=lax.canonicalize_precision(precision))
def xeinsum(spec: str, *operands): in_spec, out_spec = spec.split('->') all_in_subs, all_in_named = unzip2(XeinsumSpecParser(in_spec).parse_args()) (out_subs, out_named), = XeinsumSpecParser(out_spec).parse_args() if len(operands) != len(all_in_named): raise ValueError("Expecting the same number of argument specs in the " f"subscript ({in_spec}) as the number of operands. But got " f"{len(all_in_named)} argument specs for " f"{len(operands)} operands") if len(operands) > 2: raise NotImplementedError("Only one or two operands are supported. " f"But got {len(operands)} operands") # output subs and named axes must appear in at least one of the inputs. if not set(out_named).issubset(set().union(*all_in_named)): raise ValueError("Found named axes " f"{set(out_named) - set().union(*all_in_named)} " "appearing in the output spec but not in the input") if not set(out_subs).issubset(set().union(*all_in_subs)): raise ValueError("Found subscript(s) " f"{set(out_subs) - set().union(*all_in_subs)} " "appearing in the output spec but not in the input") xs = list(operands) for idx, (in_subs, in_named) in enumerate(safe_zip(all_in_subs, all_in_named)): # if a subscript axis appears only in one input and not the output, reduce! other_named = set().union( # type: ignore *[named for i, named in enumerate(all_in_named) if i != idx]) other_subs = set().union( # type: ignore *[subs for i, subs in enumerate(all_in_subs) if i != idx]) subs_reduce = list(set(in_subs) - {*out_subs, *other_subs}) subs_reduce_axes = [in_subs.index(n) for n in subs_reduce] named_reduce_axes = list(set(in_named) - {*out_named, *other_named}) if subs_reduce_axes or named_reduce_axes: xs[idx] = psum(xs[idx], axis_name=subs_reduce_axes + named_reduce_axes) for i in sorted(subs_reduce_axes, reverse=True): del all_in_subs[idx][i] for named_axis in named_reduce_axes: all_in_named[idx].remove(named_axis) if len(operands) == 1: return xs[0] if len(operands) == 2: x, y = xs lhs_subs, rhs_subs = all_in_subs lhs_named, rhs_named = all_in_named # if a named axis appears in both inputs and not the output, contract! named_contract = list((set(lhs_named) & set(rhs_named)) - set(out_named)) # if a subscript appears in both inputs and not the outputs, contract! subs_contract = (set(lhs_subs) & set(rhs_subs)) - set(out_subs) pos_contract = unzip2((lhs_subs.index(n), rhs_subs.index(n)) for n in subs_contract) # if a subscript appears in both inputs _and_ the outputs, batch! subs_batch = (set(lhs_subs) & set(rhs_subs)) - subs_contract pos_batch = unzip2((lhs_subs.index(n), rhs_subs.index(n)) for n in subs_batch) return pdot(x, y, axis_name=named_contract, pos_contract=pos_contract, pos_batch=pos_batch) class XeinsumSpecParser: spec: str pos: int def __init__(self, spec: str): self.spec = spec self.pos = 0 @property def eof(self): return self.pos == len(self.spec) @property def cur(self): return self.spec[self.pos] def parse_subscript(self): if self.cur in string.ascii_lowercase: out = self.cur self.pos += 1 return out, True else: return None, False def parse_axis_name(self): try: end = self.spec.index('}', self.pos) except ValueError: assert False try: end = self.spec.index(',', self.pos, end) except ValueError: pass axis_name = self.spec[self.pos:end] assert axis_name self.pos = end return axis_name def maybe_take(self, char: str, on_eof: bool = False): if self.eof: return on_eof if self.cur == char: self.pos += 1 return True def parse_arg(self): subscripts = [] names = [] while not self.eof: subscript, cont = self.parse_subscript() if not cont: break subscripts.append(subscript) if self.eof: return False, (subscripts, names) if self.maybe_take(','): return True, (subscripts, names) else: assert self.maybe_take('{') first = True while not self.maybe_take('}'): if not first: assert self.maybe_take(',') first = False if self.eof: raise ValueError("Unterminated named axis brace") axis_name = self.parse_axis_name() names.append(axis_name) return self.maybe_take(',', False), (subscripts, names) def parse_args(self): arg_specs = [] cont = True while not self.eof: cont, result = self.parse_arg() arg_specs.append(result) if cont: arg_specs.append(([], [])) return arg_specs def pgather(src, idx, axes: int | AxisName): """Uses the last positional axis of idx to index into src's axes.""" if not isinstance(axes, (tuple, list)): axes = (axes,) # TODO: Canonicalize exes! return pgather_p.bind(src, idx, axes=tuple(axes)) ### parallel primitives def _subst_all_names_in_param( pname: str, params: core.ParamDict, subst: core.AxisSubst, traverse: bool) -> core.ParamDict: axis_name = params[pname] if not isinstance(axis_name, (tuple, list)): axis_name = (axis_name,) result = dict(params) result[pname] = sum(((name,) if isinstance(name, int) else subst(name) for name in axis_name), ()) return result def _reduction_with_positional_batcher(prim, vals_in, dims_in, axis_index_groups, transform_unmapped, transform_mapped): if axis_index_groups is not None: raise NotImplementedError("axis_index_groups not supported in vmap collectives. " "Please open a feature request!") vals_in = [val if d is batching.not_mapped or d == 0 else _moveaxis(d, 0, val) for val, d in zip(vals_in, dims_in)] mapped_vals_in, unmapped_vals_in = partitioned_vals_in = [], [] mapped_idxs, unmapped_idxs = partitioned_idxs = [], [] for i, (val, d) in enumerate(zip(vals_in, dims_in)): partitioned_vals_in[d is batching.not_mapped].append(val) partitioned_idxs[d is batching.not_mapped].append(i) vals_out = [None] * len(vals_in) if unmapped_vals_in: unmapped_axes, unmapped_vals_in = transform_unmapped(0, unmapped_vals_in) unmapped_vals_out = prim.bind(*unmapped_vals_in, axes=unmapped_axes, axis_index_groups=None) for i, val in zip(unmapped_idxs, unmapped_vals_out): vals_out[i] = val if mapped_vals_in: mapped_axes, mapped_vals_in = transform_mapped(0, mapped_vals_in) mapped_vals_out = prim.bind(*mapped_vals_in, axes=mapped_axes, axis_index_groups=None) for i, val in zip(mapped_idxs, mapped_vals_out): vals_out[i] = val assert all(v is not None for v in vals_out) return vals_out def _reduction_batcher(prim, vals_in, dims_in, *, axes, axis_index_groups): assert prim.multiple_results if not any(isinstance(axis, int) for axis in axes): return prim.bind(*vals_in, axes=axes, axis_index_groups=axis_index_groups), dims_in vals_out = _reduction_with_positional_batcher( prim, vals_in, dims_in, axis_index_groups, lambda d, d_vals_in: (axes, d_vals_in), lambda d, d_vals_in: (tuple(axis + (axis >= d) if isinstance(axis, int) else axis for axis in axes), d_vals_in)) # _reduction_with_positional_batcher moves all map dims to 0 return vals_out, [d if d is batching.not_mapped else 0 for d in dims_in] def _batched_reduction_collective( prim, if_unmapped, axis_size, frame_name, _, vals_in, dims_in, axes, axis_index_groups): assert prim.multiple_results assert frame_name in axes # Note that we have a choice here. We can either unfuse the reduction into one # that handles the batched dims and then another one that handles the rest. # Alternatively, we can keep the dimension reduction fused with the rest, but # we have to split the primitive into one for unmapped inputs and another # one for mapped, because they differ in their `axes` parameter. # We choose the second strategy here. vals_out = _reduction_with_positional_batcher( prim, vals_in, dims_in, axis_index_groups, lambda d, d_vals_in: (tuple(axis for axis in axes if axis != frame_name), [if_unmapped(v, axis_size) for v in d_vals_in]), lambda d, d_vals_in: (tuple(axis + (axis >= d) if isinstance(axis, int) else axis if axis != frame_name else d for axis in axes), d_vals_in)) return vals_out, [batching.not_mapped] * len(vals_out) def _replica_groups(axis_env, axis_name, axis_index_groups): replica_groups = pxla.axis_groups(axis_env, axis_name) if axis_index_groups is not None: replica_groups = [[axis_group[i] for i in axis_index_group] for axis_group in replica_groups for axis_index_group in axis_index_groups] return replica_groups def _replica_groups_hlo(replica_groups: Sequence[Sequence[int]] ) -> ir.DenseIntElementsAttr: # Uneven replica groups are padded with -1. groups = np.array(list(itertools.zip_longest(*replica_groups, fillvalue=-1)), dtype=np.int64).T return ir.DenseIntElementsAttr.get(np.ascontiguousarray(groups)) def _allreduce_impl(pos_reducer, *args, axes, axis_index_groups): assert axis_index_groups is None assert all(isinstance(axis, int) for axis in axes) return [pos_reducer(arg, axes) for arg in args] def _allreduce_effectful_abstract_eval(*args, axes, axis_index_groups): # TODO(frostig,mattjj,jekbradbury): maybe check aval names here pos_axes = tuple(axis for axis in axes if isinstance(axis, int)) named_shapes = [arg.named_shape for arg in args] named_axes = {axis for axis in axes if not isinstance(axis, int)} if axis_index_groups is None: named_shapes = [{name: size for name, size in arg.named_shape.items() if name not in named_axes} for arg in args] else: if len(pos_axes) != 0: raise ValueError(f"axis_index_groups can only be used with reductions over " f"named axes, but got: {axes}") out_avals = [ ShapedArray(lax._reduce_op_shape_rule(raise_to_shaped(arg), axes=pos_axes), arg.dtype, named_shape=named_shape) for arg, named_shape in zip(args, named_shapes)] return out_avals, {core.NamedAxisEffect(axis) for axis in named_axes} def _allreduce_lowering(prim, pos_fn, ctx, *args, axes, axis_index_groups): if axis_index_groups is not None and ("tpu" in ctx.module_context.platforms): len_0 = len(axis_index_groups[0]) if any(len(g) != len_0 for g in axis_index_groups): raise ValueError("axis_index_groups must all be the same size for TPU lowering") named_axes, positional_axes = axes_partition = [], [] for axis in axes: axes_partition[isinstance(axis, int)].append(axis) if positional_axes: reducer = mlir.lower_fun(pos_fn, multiple_results=False) def _positional_reduce(aval, arg): aval_out = aval.update( shape=np.delete(np.array(aval.shape, dtype=np.int64), positional_axes)) reducer_ctx = ctx.replace(primitive=None, avals_in=[aval], avals_out=[aval_out]) out, = reducer(reducer_ctx, arg, axes=tuple(positional_axes))[0] return out args = map(_positional_reduce, ctx.avals_in, args) if not named_axes: return args replica_groups = _replica_groups_hlo( _replica_groups(ctx.module_context.axis_env, named_axes, axis_index_groups)) axis_context = ctx.module_context.axis_context is_spmd = isinstance( axis_context, (sharding_impls.SPMDAxisContext, sharding_impls.ShardingContext), ) def all_reduce(aval, x): if is_spmd: channel = ctx.module_context.new_channel() other_args = dict( channel_handle=hlo.ChannelHandle.get( channel, mlir.DEVICE_TO_DEVICE_TYPE), use_global_device_ids=ir.BoolAttr.get(True)) else: other_args = {} op = hlo.AllReduceOp( x.type, x, replica_groups=replica_groups, **other_args) scalar_aval = core.ShapedArray((), aval.dtype) scalar_type = mlir.aval_to_ir_type(scalar_aval) reducer_block = op.regions[0].blocks.append(scalar_type, scalar_type) with ir.InsertionPoint(reducer_block): lower_reducer = mlir.lower_fun(prim.bind, multiple_results=False) reducer_ctx = ctx.replace(primitive=None, avals_in=[scalar_aval] * 2, avals_out=[scalar_aval]) out_nodes = lower_reducer( reducer_ctx, *([a] for a in reducer_block.arguments)) hlo.return_(util.flatten(out_nodes)) return op.result return [all_reduce(aval, x) for aval, x in zip(ctx.avals_in, args)] def _psum_transpose_rule(cts, *args, axes, axis_index_groups): named_axes, pos_axes = axes_partition = [], [] for axis in axes: axes_partition[isinstance(axis, int)].append(axis) if pos_axes: def broadcast_positional(ct, arg): assert ad.is_undefined_primal(arg) if type(ct) is ad.Zero: return ad.Zero(arg.aval) return lax._reduce_sum_transpose_rule(ct, arg, axes=pos_axes)[0] cts = map(broadcast_positional, cts, args) # We treat psum as psum + pbroadcast, which is why the transpose reduces # over the named axes again (unlike for positional axes). nonzero_out_cts, treedef = tree_util.tree_flatten(cts) nonzero_in_cts = psum_p.bind(*nonzero_out_cts, axes=tuple(named_axes), axis_index_groups=axis_index_groups) return tree_util.tree_unflatten(treedef, nonzero_in_cts) psum_p = core.AxisPrimitive('psum') psum_p.multiple_results = True psum_p.def_impl(partial(_allreduce_impl, lax._reduce_sum)) psum_p.def_effectful_abstract_eval(_allreduce_effectful_abstract_eval) mlir.register_lowering( psum_p, partial(_allreduce_lowering, lax.add_p, lax._reduce_sum)) ad.deflinear2(psum_p, _psum_transpose_rule) batching.primitive_batchers[psum_p] = partial(_reduction_batcher, psum_p) batching.axis_primitive_batchers[psum_p] = \ partial(_batched_reduction_collective, psum_p, lambda v, axis_size: axis_size * v) core.axis_substitution_rules[psum_p] = partial(_subst_all_names_in_param, 'axes') # We set a special bind rule for psum so that psum(1, 'i') can be evaluated at # tracing time. @psum_p.def_custom_bind def psum_bind(*args, axes, axis_index_groups): if all(not isinstance(x, core.Tracer) for x in args): named_axes, pos_axes = axes_partition = [], [] for axis in axes: axes_partition[isinstance(axis, int)].append(axis) def pos_reduce(x): if not pos_axes: return x return lax._reduce_sum(x, [canonicalize_axis(axis, getattr(x, 'ndim', 0)) for axis in pos_axes]) if axis_index_groups is not None: assert not pos_axes size = len(axis_index_groups[0]) else: size = math.prod([core.axis_frame(name).size for name in named_axes]) # type: ignore return tuple(lax._const(x, size) * pos_reduce(x) for x in args) return core.AxisPrimitive.bind( psum_p, *args, axes=axes, axis_index_groups=axis_index_groups) pmax_p = core.AxisPrimitive('pmax') pmax_p.multiple_results = True pmax_p.def_impl(partial(_allreduce_impl, lax._reduce_max)) pmax_p.def_effectful_abstract_eval(_allreduce_effectful_abstract_eval) mlir.register_lowering( pmax_p, partial(_allreduce_lowering, lax.max_p, lax._reduce_max)) batching.primitive_batchers[pmax_p] = partial(_reduction_batcher, pmax_p) batching.axis_primitive_batchers[pmax_p] = \ partial(_batched_reduction_collective, pmax_p, lambda v, axis_size: v) core.axis_substitution_rules[pmax_p] = partial(_subst_all_names_in_param, 'axes') pmin_p = core.AxisPrimitive('pmin') pmin_p.multiple_results = True pmin_p.def_impl(partial(_allreduce_impl, lax._reduce_min)) pmin_p.def_effectful_abstract_eval(_allreduce_effectful_abstract_eval) mlir.register_lowering( pmin_p, partial(_allreduce_lowering, lax.min_p, lax._reduce_min)) batching.primitive_batchers[pmin_p] = partial(_reduction_batcher, pmin_p) batching.axis_primitive_batchers[pmin_p] = \ partial(_batched_reduction_collective, pmin_p, lambda v, axis_size: v) core.axis_substitution_rules[pmin_p] = partial(_subst_all_names_in_param, 'axes') def _ppermute_lowering(ctx, x, *, axis_name, perm): replica_groups = _replica_groups(ctx.module_context.axis_env, axis_name, None) group_size = len(replica_groups[0]) srcs, dsts = unzip2((src % group_size, dst % group_size) for src, dst in perm) if not (len(srcs) == len(set(srcs)) and len(dsts) == len(set(dsts))): msg = "ppermute sources and destinations must be unique, got {}." raise ValueError(msg.format(perm)) full_perm = np.zeros((len(replica_groups), len(perm), 2), np.int64) for i, grp in enumerate(replica_groups): grp = sorted(grp) for j, (src, dst) in enumerate(perm): full_perm[i, j, 0] = grp[src] full_perm[i, j, 1] = grp[dst] full_perm = full_perm.reshape((-1, 2)) axis_context = ctx.module_context.axis_context is_manual = ( isinstance(axis_context, sharding_impls.SPMDAxisContext) and axis_context.manual_axes ) if is_manual: channel = ctx.module_context.new_channel() other_args = dict( channel_handle=hlo.ChannelHandle.get(channel, mlir.DEVICE_TO_DEVICE_TYPE)) else: other_args = {} return hlo.CollectivePermuteOp( x, mlir.dense_int_elements(full_perm), **other_args).results def _ppermute_transpose_rule(t, x, perm, axis_name): srcs, dsts = unzip2(perm) inverse_perm = list(zip(dsts, srcs)) return [ppermute(t, axis_name=axis_name, perm=inverse_perm)] def _ppermute_batcher(axis_size, frame_name, _, vals_in, dims_in, axis_name, perm): (v,), (d,) = vals_in, dims_in if not isinstance(axis_name, (tuple, list)): axis_name = (axis_name,) remaining_axes = tuple(axis for axis in axis_name if axis != frame_name) if axis_size == 1 and remaining_axes: return ppermute_p.bind(v, perm=perm, axis_name=remaining_axes), d if remaining_axes: raise NotImplementedError("ppermute batcher only supports a single axis") assert axis_name[0] == frame_name, "ppermute batcher called with a wrong axis!" assert len(perm) == axis_size, "Permutation doesn't match the axis size!" if d is batching.not_mapped: return v, d perm_indices = np.zeros(axis_size, dtype=int) for src, dst in perm: perm_indices[dst] = src return lax_numpy.take(v, perm_indices, d), d def _collective_batcher(prim, args, dims, **params): return prim.bind(*args, **params), dims if prim.multiple_results else dims[0] ppermute_p = core.AxisPrimitive('ppermute') ppermute_p.def_abstract_eval(lambda x, **params: raise_to_shaped(x)) ad.deflinear2(ppermute_p, _ppermute_transpose_rule) mlir.register_lowering(ppermute_p, _ppermute_lowering) batching.primitive_batchers[ppermute_p] = partial(_collective_batcher, ppermute_p) batching.axis_primitive_batchers[ppermute_p] = _ppermute_batcher core.axis_substitution_rules[ppermute_p] = partial(_subst_all_names_in_param, 'axis_name') def _pbroadcast_transpose_rule(t, x, source, axis_name): is_source = axis_index(axis_name) == source tsum = psum(t, axis_name) return [lax_numpy.where(is_source, tsum, lax_numpy.zeros_like(t))] def _pbroadcast_batcher(axis_size, frame_name, _, vals_in, dims_in, axis_name, source): (v,), (d,) = vals_in, dims_in if not isinstance(axis_name, (tuple, list)): axis_name = (axis_name,) remaining_axes = tuple(axis for axis in axis_name if axis != frame_name) if remaining_axes: raise NotImplementedError("pbroadcast batcher only supports a single axis") assert axis_name[0] == frame_name, "pbroadcast batcher called with a wrong axis!" assert source >= 0 and source < axis_size, "collective broadcast doesn't fit in the axis size!" if axis_size == 1 and remaining_axes: return pbroadcast_p.bind(v, source=source, axis_name=remaining_axes), d if d is batching.not_mapped: return v, d return lax_numpy.take(v, [source] * axis_size, d), d def _pbroadcast_lowering(ctx, x, *, axis_name, source): replica_groups = _replica_groups(ctx.module_context.axis_env, axis_name, None) def source_to_front(group): return [group[source]] + list(group[:source]) + list(group[source + 1:]) replica_groups = [source_to_front(group) for group in replica_groups] channel = ctx.module_context.new_channel() return hlo.CollectiveBroadcastOp( x, replica_groups=_replica_groups_hlo(replica_groups)).results pbroadcast_p = core.AxisPrimitive('pbroadcast') pbroadcast_p.def_abstract_eval(lambda x, **params: raise_to_shaped(x)) ad.deflinear2(pbroadcast_p, _pbroadcast_transpose_rule) mlir.register_lowering(pbroadcast_p, _pbroadcast_lowering) batching.primitive_batchers[pbroadcast_p] = partial(_collective_batcher, pbroadcast_p) batching.axis_primitive_batchers[pbroadcast_p] = _pbroadcast_batcher core.axis_substitution_rules[pbroadcast_p] = partial(_subst_all_names_in_param, 'axis_name') def _moveaxis(src, dst, x): perm = [i for i in range(x.ndim) if i != src] perm.insert(dst, src) return lax.transpose(x, perm) def _splitaxis(axis, factor, x): new_shape = list(x.shape) assert new_shape[axis] % factor == 0, (new_shape[axis], factor) new_shape[axis:axis+1] = [factor, new_shape[axis] // factor] return x.reshape(new_shape) def _foldaxis(axis, x): new_shape = list(x.shape) new_shape[axis:axis+2] = [x.shape[axis] * x.shape[axis + 1]] return x.reshape(new_shape) def _index_in_group(axis_name, axis_index_groups): cur_device_id = axis_index(axis_name) if axis_index_groups is None: return cur_device_id # We use argsort to invert the axis_index_groups permutation flat_groups = np.array(axis_index_groups).flatten() device_id_to_idx = flat_groups.argsort() % len(axis_index_groups[0]) return lax.squeeze( slicing.dynamic_slice_in_dim(device_id_to_idx, cur_device_id, 1), [0]) def _all_to_all_lowering( ctx, x, *, split_axis, concat_axis, axis_name, axis_index_groups, tiled ): del tiled # expand_dims and squeeze is done in `all_to_all` if `True` # Workaround for AllToAll not being implemented on CPU. replica_groups = _replica_groups(ctx.module_context.axis_env, axis_name, axis_index_groups) if len(replica_groups[0]) == 1: return [x] split_count = len(replica_groups[0]) if not all(split_count == len(g) for g in replica_groups): raise ValueError('Replica groups must be equally sized') is_spmd = isinstance( ctx.module_context.axis_context, (sharding_impls.SPMDAxisContext, sharding_impls.ShardingContext), ) if is_spmd: # We want to emit the all-gather with global device IDs and a unique # channel ID, as otherwise it interprets the devices as replicas instead # of partitions - and XLA is configured with only a single replica. channel = ctx.module_context.new_channel() channel_handle = hlo.ChannelHandle.get(channel, mlir.DEVICE_TO_DEVICE_TYPE) other_args = dict(channel_handle=channel_handle) else: other_args = {} return hlo.AllToAllOp( x, split_dimension=mlir.i64_attr(split_axis), concat_dimension=mlir.i64_attr(concat_axis), split_count=mlir.i64_attr(split_count), replica_groups=_replica_groups_hlo(replica_groups), **other_args).results def _all_to_all_transpose_rule( cts, x, axis_name, split_axis, concat_axis, axis_index_groups, tiled ): return (all_to_all( cts, axis_name=axis_name, split_axis=concat_axis, concat_axis=split_axis, axis_index_groups=axis_index_groups, tiled=tiled),) def _all_to_all_batcher(vals_in, dims_in, *, axis_name, split_axis, concat_axis, axis_index_groups, tiled): x, = vals_in d, = dims_in result = all_to_all_p.bind( x, axis_name=axis_name, split_axis=split_axis + (d <= split_axis), concat_axis=concat_axis + (d <= concat_axis), axis_index_groups=axis_index_groups, tiled=tiled, ) return result, d def _all_to_all_batched_collective(axis_size, frame_name, _, vals_in, dims_in, axis_name, split_axis, concat_axis, axis_index_groups, tiled): if axis_index_groups is not None: raise NotImplementedError("Please open a feature request!") x, = vals_in d, = dims_in if d is batching.not_mapped: # TODO(sharadmv,apaszke): Remove this broadcast that comes from # all_gather_transpose and instead avoid using all_to_all in # all_gather_transpose. x = lax.broadcast(x, (axis_size, *x.shape)) d = 0 if isinstance(axis_name, (list, tuple)): pos = axis_name.index(frame_name) major_axes, minor_axes = axis_name[:pos], axis_name[pos + 1:] else: major_axes, minor_axes = (), () # Optimized case when no splitting is necessary if not major_axes and not minor_axes: if split_axis == concat_axis: axis = split_axis + (d <= split_axis) d_pre_split = d x = _splitaxis(axis, axis_size, x) d += (axis <= d) return _foldaxis(axis, moveaxis(x, (d, axis), (axis, d))), d_pre_split else: x_concat = _foldaxis(concat_axis, _moveaxis(d, concat_axis, x)) return _splitaxis(split_axis, axis_size, x_concat), split_axis # Here we have to handle either the major or the minor dimensions # We will be accumulating chunks into the three leading dims: [Major, Current, Minor, ...] x, d = lax.expand_dims(_moveaxis(d, 0, x), (0, 2)), 1 split_axis += 3; concat_axis += 3 # Offset by extra three leading dims if major_axes: x = all_to_all_p.bind(x, axis_name=major_axes, split_axis=split_axis, concat_axis=0, axis_index_groups=axis_index_groups, tiled=tiled) # Split out the local part into axis new_d (NOTE: d is already in axis 1) x = _splitaxis(split_axis, axis_size, x) new_d = split_axis concat_axis += (split_axis <= concat_axis) # Offset the existing axes by the new batch axis split_axis += 1 if minor_axes: x = all_to_all_p.bind(x, axis_name=minor_axes, split_axis=split_axis, concat_axis=2, axis_index_groups=axis_index_groups, tiled=tiled) # Fold the chunk axes into a single one x = _foldaxis(0, _foldaxis(0, x)) split_axis -= 2; concat_axis -= 2; new_d -= 2 # Fold gathered axes into concat_axis x = _foldaxis(concat_axis - 1, _moveaxis(0, concat_axis - 1, x)) new_d -= 1 # We've removed 0th dimension, so new_d needs to be adjusted return x, new_d def _all_to_all_effectful_abstract_eval( x, axis_name, split_axis, concat_axis, axis_index_groups, tiled ): del tiled # expand_dims and squeeze is done in `all_to_all` if `True` if not isinstance(axis_name, (list, tuple)): axis_name = (axis_name,) input_aval = raise_to_shaped(x) shape = list(input_aval.shape) axis_size = psum(1, axis_name) if axis_index_groups is None else len(axis_index_groups[0]) assert shape[split_axis] % axis_size == 0, (shape[split_axis], axis_size) shape[split_axis] //= axis_size shape[concat_axis] *= axis_size out_aval = input_aval.update(shape=tuple(shape), weak_type=False) effects = {*map(core.NamedAxisEffect, axis_name)} return out_aval, effects all_to_all_p = core.AxisPrimitive('all_to_all') all_to_all_p.def_effectful_abstract_eval(_all_to_all_effectful_abstract_eval) mlir.register_lowering(all_to_all_p, _all_to_all_lowering) ad.deflinear2(all_to_all_p, _all_to_all_transpose_rule) batching.primitive_batchers[all_to_all_p] = _all_to_all_batcher batching.axis_primitive_batchers[all_to_all_p] = _all_to_all_batched_collective core.axis_substitution_rules[all_to_all_p] = partial(_subst_all_names_in_param, 'axis_name')
[docs] def all_gather(x, axis_name, *, axis_index_groups=None, axis=0, tiled=False): """Gather values of x across all replicas. If ``x`` is a pytree then the result is equivalent to mapping this function to each leaf in the tree. This is equivalent to, but faster than, all_to_all(broadcast(x)). Args: x: array(s) with a mapped axis named ``axis_name``. axis_name: hashable Python object used to name a pmapped axis (see the :func:`jax.pmap` documentation for more details). axis_index_groups: optional list of lists containing axis indices (e.g. for an axis of size 4, [[0, 1], [2, 3]] would run all gather over the first two and last two replicas). Groups must cover all axis indices exactly once, and all groups must be the same size. axis: a positional axis into which the chunks along ``axis_name`` will be concatenated. tiled: when ``False``, the chunks will be stacked into a fresh positional axis at index ``axis`` in the output. When ``True``, ``axis`` has to refer to an existing positional dimension and the chunks will be concatenated into that dimension. Returns: Array(s) representing the result of an all-gather along the axis ``axis_name``. Shapes are the same as ``x.shape``, but: - when ``tiled`` is ``False``, there is a new dimension equal to the size of axis ``axis_name`` in position ``axis``, - when ``tiled`` is ``True``, the size of dimension in position ``axis`` is multiplied by the size of axis ``axis_name``. For example, with 4 XLA devices available: >>> x = np.arange(4) >>> y = jax.pmap(lambda x: jax.lax.all_gather(x, 'i'), axis_name='i')(x) >>> print(y) [[0 1 2 3] [0 1 2 3] [0 1 2 3] [0 1 2 3]] An example of using axis_index_groups, groups split by even & odd device ids: >>> x = np.arange(16).reshape(4, 4) >>> print(x) [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] >>> def f(x): ... return jax.lax.all_gather( ... x, 'i', axis_index_groups=[[0, 2], [3, 1]]) >>> y = jax.pmap(f, axis_name='i')(x) >>> print(y) [[[ 0 1 2 3] [ 8 9 10 11]] [[12 13 14 15] [ 4 5 6 7]] [[ 0 1 2 3] [ 8 9 10 11]] [[12 13 14 15] [ 4 5 6 7]]] """ axis_index_groups = _canonicalize_axis_index_groups(axis_index_groups) axis_size = psum(1, axis_name, axis_index_groups=axis_index_groups) def bind(leaf): return all_gather_p.bind( leaf, all_gather_dimension=canonicalize_axis( axis, np.ndim(leaf) if tiled else np.ndim(leaf) + 1), axis_name=axis_name, axis_index_groups=axis_index_groups, axis_size=axis_size, tiled=tiled) return tree_util.tree_map(bind, x)
def _expand(dim, size, index, tiled, x): shape = list(x.shape) if tiled: tile_size = shape[dim] shape[dim] *= size out = lax.full(shape, lax._const(x, 0)) return slicing.dynamic_update_slice_in_dim(out, x, index * tile_size, dim) else: shape.insert(dim, size) out = lax.full(shape, lax._const(x, 0)) return slicing.dynamic_update_index_in_dim(out, x, index, dim) def _all_gather_impl(x, *, all_gather_dimension, axis_name, axis_index_groups, axis_size, tiled): raise AssertionError("Unexpected call to _all_gather_impl") def _all_gather_lowering(ctx, x, *, all_gather_dimension, axis_name, axis_index_groups, axis_size, tiled, platform=None): x_aval, = ctx.avals_in out_aval, = ctx.avals_out axis_context = ctx.module_context.axis_context is_spmd = isinstance( axis_context, (sharding_impls.SPMDAxisContext, sharding_impls.ShardingContext), ) if not tiled: new_shape = list(x_aval.shape) new_shape.insert(all_gather_dimension, 1) broadcast_dimensions = [i for i in range(len(new_shape)) if i != all_gather_dimension] x = hlo.broadcast_in_dim( mlir.aval_to_ir_type(x_aval.update(shape=new_shape)), x, mlir.dense_int_array_v6(broadcast_dimensions)) replica_groups = _replica_groups(ctx.module_context.axis_env, axis_name, axis_index_groups) if is_spmd: # We want to emit the all-gather with global device IDs and a unique # channel ID, as otherwise it interprets the devices as replicas instead # of partitions - and XLA is configured with only a single replica. channel = ctx.module_context.new_channel() other_args = dict( channel_handle=hlo.ChannelHandle.get( channel, mlir.DEVICE_TO_DEVICE_TYPE), use_global_device_ids=ir.BoolAttr.get(True)) else: other_args = {} return hlo.AllGatherOp( mlir.aval_to_ir_type(out_aval), x, all_gather_dim=mlir.i64_attr(all_gather_dimension), replica_groups=_replica_groups_hlo(replica_groups), **other_args).results def _all_gather_effectful_abstract_eval( x, *, all_gather_dimension, axis_name, axis_index_groups, axis_size, tiled ): if not isinstance(axis_name, (list, tuple)): axis_name = (axis_name,) x_aval = raise_to_shaped(x) new_shape = list(x_aval.shape) if tiled: new_shape[all_gather_dimension] *= axis_size else: new_shape.insert(all_gather_dimension, axis_size) new_named_shape = {name: size for name, size in x_aval.named_shape.items() if name not in axis_name} out_aval = x_aval.update(shape=new_shape, named_shape=new_named_shape) effects = {*map(core.NamedAxisEffect, axis_name)} return out_aval, effects def _all_gather_transpose_rule(cts, x, *, all_gather_dimension, axis_name, axis_index_groups, axis_size, tiled): return (psum_scatter(cts, axis_name=axis_name, scatter_dimension=all_gather_dimension, axis_index_groups=axis_index_groups, tiled=tiled),) # TODO(sharadmv,apaszke): re-enable this when we can properly detect replication. # return (lax.dynamic_index_in_dim(cts, idx, axis=all_gather_dimension, keepdims=False) * axis_size,) def _all_gather_batcher(vals_in, dims_in, *, all_gather_dimension, axis_name, axis_index_groups, axis_size, tiled): (x,), (d,) = vals_in, dims_in if d <= all_gather_dimension: all_gather_dimension += 1 elif not tiled: # Tiled all-gather doesn't modify the set of dimensions d += 1 result = all_gather_p.bind( x, all_gather_dimension=all_gather_dimension, axis_name=axis_name, axis_index_groups=axis_index_groups, axis_size=axis_size, tiled=tiled) return result, d def _all_gather_batched_collective(frame_size, frame_name, _, vals_in, dims_in, all_gather_dimension, axis_name, axis_index_groups, axis_size, tiled): if axis_index_groups is not None: raise NotImplementedError("axis_index_groups not supported in vmap") assert axis_size == frame_size, "axis size doesn't match" if not isinstance(axis_name, tuple): axis_name = (axis_name,) if len(axis_name) > 1: raise NotImplementedError("Please open a feature request!") assert axis_name == (frame_name,), "batcher called with wrong axis name" (x,), (d,) = vals_in, dims_in if d is batching.not_mapped: out_shape = list(np.shape(x)) out_shape.insert(all_gather_dimension, axis_size) broadcast_dims = [i for i in range(len(out_shape)) if i != all_gather_dimension] y = lax.broadcast_in_dim(x, out_shape, broadcast_dims) else: y = _moveaxis(d, all_gather_dimension, x) if tiled: y = _foldaxis(all_gather_dimension, y) return y, batching.not_mapped all_gather_p = core.AxisPrimitive('all_gather') all_gather_p.def_effectful_abstract_eval(_all_gather_effectful_abstract_eval) all_gather_p.def_impl(_all_gather_impl) mlir.register_lowering(all_gather_p, _all_gather_lowering) for p in ("cuda", "rocm", "tpu"): mlir.register_lowering(all_gather_p, partial(_all_gather_lowering, platform=p), platform=p) ad.deflinear2(all_gather_p, _all_gather_transpose_rule) batching.primitive_batchers[all_gather_p] = _all_gather_batcher batching.axis_primitive_batchers[all_gather_p] = _all_gather_batched_collective core.axis_substitution_rules[all_gather_p] = partial(_subst_all_names_in_param, 'axis_name') def _reduce_scatter_lowering( prim, ctx, x, *, scatter_dimension, axis_name, axis_index_groups, axis_size, tiled): x_aval, = ctx.avals_in aval_out, = ctx.avals_out scalar_aval = x_aval.update(shape=()) replica_groups = _replica_groups(ctx.module_context.axis_env, axis_name, axis_index_groups) scatter_out_shape = list(x_aval.shape) scatter_out_shape[scatter_dimension] //= axis_size axis_context = ctx.module_context.axis_context is_spmd = isinstance( axis_context, (sharding_impls.SPMDAxisContext, sharding_impls.ShardingContext), ) if is_spmd: # We want to emit the all-gather with global device IDs and a unique # channel ID, as otherwise it interprets the devices as replicas instead # of partitions - and XLA is configured with only a single replica. channel = ctx.module_context.new_channel() other_args = dict( channel_handle=hlo.ChannelHandle.get( channel, mlir.DEVICE_TO_DEVICE_TYPE), use_global_device_ids=ir.BoolAttr.get(True)) else: other_args = {} op = hlo.ReduceScatterOp( mlir.aval_to_ir_type(x_aval.update(shape=scatter_out_shape)), x, scatter_dimension=mlir.i64_attr(scatter_dimension), replica_groups=_replica_groups_hlo(replica_groups), **other_args) scalar_type = mlir.aval_to_ir_type(scalar_aval) reducer_block = op.regions[0].blocks.append(scalar_type, scalar_type) with ir.InsertionPoint(reducer_block): lower_reducer = mlir.lower_fun(prim.bind, multiple_results=False) reducer_ctx = ctx.replace(primitive=None, avals_in=[scalar_aval] * 2, avals_out=[scalar_aval]) out_nodes = lower_reducer( reducer_ctx, *([a] for a in reducer_block.arguments)) hlo.return_(util.flatten(out_nodes)) if tiled: return op.results else: return [hlo.reshape(mlir.aval_to_ir_type(aval_out), op.result)] def _reduce_scatter_effectful_abstract_eval( x, *, axis_name, scatter_dimension, axis_index_groups, axis_size, tiled ): if not isinstance(axis_name, (list, tuple)): axis_name = (axis_name,) x_aval = core.raise_to_shaped(x) new_shape = list(x_aval.shape) scatter_dim_input_size = x_aval.shape[scatter_dimension] if tiled: if scatter_dim_input_size % axis_size != 0: raise ValueError(f"tiled reduce_scatter operand scatter dimension size " f"{scatter_dim_input_size} must be divisible by " f"shard_count {axis_size}") new_shape[scatter_dimension] = scatter_dim_input_size // axis_size else: if scatter_dim_input_size != axis_size: raise ValueError(f"reduce_scatter operand scatter dimension size " f"{scatter_dim_input_size} must match shard count " f"{axis_size}") del new_shape[scatter_dimension] new_named_shape = { name: size for name, size in x_aval.named_shape.items() if name not in axis_name } out_aval = x_aval.update(shape=new_shape, named_shape=new_named_shape) effects = {*map(core.NamedAxisEffect, axis_name)} return out_aval, effects def _reduce_scatter_transpose_rule(cts, x, *, axis_name, scatter_dimension, axis_index_groups, axis_size, tiled): return (all_gather(cts, axis_name=axis_name, axis_index_groups=axis_index_groups, axis=scatter_dimension, tiled=tiled),) def _reduce_scatter_batcher(vals_in, dims_in, *, scatter_dimension, axis_name, axis_index_groups, axis_size, tiled): (x,), (d,) = vals_in, dims_in if d <= scatter_dimension: scatter_dimension += 1 elif not tiled: # Tiled all-scatter doesn't change the rank d += 1 result = reduce_scatter_p.bind( x, scatter_dimension=scatter_dimension, axis_name=axis_name, axis_index_groups=axis_index_groups, axis_size=axis_size, tiled=tiled) return result, d def _reduce_scatter_collective(frame_size, frame_name, _, vals_in, dims_in, scatter_dimension, axis_name, axis_index_groups, axis_size, tiled): if axis_index_groups is not None: raise NotImplementedError("axis_index_groups not supported in vmap") assert axis_size == frame_size, "axis size doesn't match" if not isinstance(axis_name, tuple): axis_name = (axis_name,) if len(axis_name) > 1: raise NotImplementedError("Please open a feature request!") assert axis_name == (frame_name,), "batcher called with wrong axis name" (x,), (d,) = vals_in, dims_in if d is batching.not_mapped: y, dy = x * axis_size, scatter_dimension else: y, dy = lax.reduce(x, 0., lax.add, (d,)), scatter_dimension if tiled: y = _splitaxis(dy, axis_size, y) return y, dy reduce_scatter_p = core.AxisPrimitive("reduce_scatter") reduce_scatter_p.def_effectful_abstract_eval( _reduce_scatter_effectful_abstract_eval ) ad.deflinear2(reduce_scatter_p, _reduce_scatter_transpose_rule) batching.primitive_batchers[reduce_scatter_p] = _reduce_scatter_batcher batching.axis_primitive_batchers[reduce_scatter_p] = _reduce_scatter_collective mlir.register_lowering(reduce_scatter_p, partial(_reduce_scatter_lowering, lax.add_p)) core.axis_substitution_rules[reduce_scatter_p] = \ partial(_subst_all_names_in_param, 'axis_name')
[docs] def psum_scatter(x, axis_name, *, scatter_dimension=0, axis_index_groups=None, tiled=False): """ Like ``psum(x, axis_name)`` but each device retains only part of the result. For example, ``psum_scatter(x, axis_name, scatter_dimension=0, tiled=False)`` computes the same value as ``psum(x, axis_name)[axis_index(axis_name)]``, but it is more efficient. Thus the ``psum`` result is left scattered along the mapped axis. One efficient algorithm for computing ``psum(x, axis_name)`` is to perform a ``psum_scatter`` followed by an ``all_gather``, essentially evaluating ``all_gather(psum_scatter(x, axis_name))``. So we can think of ``psum_scatter`` as "the first half" of a ``psum``. Args: x: array(s) with a mapped axis named ``axis_name``. axis_name: hashable Python object used to name a mapped axis (see the :func:`jax.pmap` documentation for more details). scatter_dimension: a positional axis into which the all-reduce result along ``axis_name`` will be scattered. axis_index_groups: optional list of lists of integers containing axis indices. For example, for an axis of size 4, ``axis_index_groups=[[0, 1], [2, 3]]`` would run reduce-scatter over the first two and the last two axis indices. Groups must cover all axis indices exactly once, and all groups must be the same size. tiled: boolean representing whether to use rank-preserving 'tiled' behavior. When ``False`` (the default value), the size of dimension in ``scatter_dimension`` must match the size of axis ``axis_name`` (or the group size if ``axis_index_groups`` is given). After scattering the all-reduce result along ``scatter_dimension``, the output is sequeezed by removing ``scatter_dimension``, so the result has lower rank than the input. When ``True``, the size of dimension in ``scatter_dimension`` must be dividible by the size of axis ``axis_name`` (or the group size if ``axis_index_groups`` is given), and the ``scatter_dimension`` axis is preserved (so the result has the same rank as the input). Returns: Array(s) with the similar shape as ``x``, except the size of dimension in position ``scatter_dimension`` is divided by the size of axis ``axis_name`` (when ``tiled=True``), or the dimension in position ``scatter_dimension`` is eliminated (when ``tiled=False``). For example, with 4 XLA devices available: >>> x = np.arange(16).reshape(4, 4) >>> print(x) [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] >>> y = jax.pmap(lambda x: jax.lax.psum_scatter(x, 'i'), axis_name='i')(x) >>> print(y) [24 28 32 36] if using tiled: >>> y = jax.pmap(lambda x: jax.lax.psum_scatter(x, 'i', tiled=True), axis_name='i')(x) >>> print(y) [[24] [28] [32] [36]] An example of using axis_index_groups: >>> def f(x): ... return jax.lax.psum_scatter( ... x, 'i', axis_index_groups=[[0, 2], [3, 1]], tiled=True) >>> y = jax.pmap(f, axis_name='i')(x) >>> print(y) [[ 8 10] [20 22] [12 14] [16 18]] """ axis_size = psum(1, axis_name, axis_index_groups=axis_index_groups) axis_index_groups = _canonicalize_axis_index_groups(axis_index_groups) bind = partial( reduce_scatter_p.bind, axis_name=axis_name, scatter_dimension=scatter_dimension, axis_index_groups=axis_index_groups, axis_size=axis_size, tiled=tiled) return tree_util.tree_map(bind, x)
def _build_axis_index_lowering_hlo(ctx, axis_name, axis_env): if isinstance(axis_name, tuple): assert axis_name, 'empty axis name' if len(axis_name) > 1: raise NotImplementedError( '`axis_index` translation rule does not support multiple axis names.') axis_name, = axis_name axis_pos = list(axis_env.names).index(axis_name) nreplicas = axis_env.nreps // math.prod(axis_env.sizes) div = mlir.ir_constant( np.array( nreplicas * math.prod(axis_env.sizes[axis_pos + 1 :]), dtype=np.uint32 ) ) mod = mlir.ir_constant(np.array(axis_env.sizes[axis_pos], dtype=np.uint32)) axis_context = ctx.module_context.axis_context is_spmd = isinstance( axis_context, (sharding_impls.SPMDAxisContext, sharding_impls.ShardingContext), ) if is_spmd: device_id = hlo.partition_id() else: device_id = hlo.replica_id() unsigned_index = hlo.remainder(hlo.divide(device_id, div), mod) return hlo.convert( ir.RankedTensorType.get([], ir.IntegerType.get_signless(32)), unsigned_index) def _axis_index_lowering(ctx, *, axis_name): return [ _build_axis_index_lowering_hlo(ctx, axis_name, ctx.module_context.axis_env) ] def _axis_index_effectful_abstract_eval(*, axis_name): frame = core.axis_frame(axis_name) out_aval = ShapedArray((), np.int32, named_shape={axis_name: frame.size}) return out_aval, {core.NamedAxisEffect(axis_name)} axis_index_p = core.Primitive('axis_index') mlir.register_lowering(axis_index_p, _axis_index_lowering) axis_index_p.def_effectful_abstract_eval(_axis_index_effectful_abstract_eval) core.axis_substitution_rules[axis_index_p] = partial(_subst_all_names_in_param, 'axis_name') # Axis index doesn't get any arguments, so that the default bind would have no # way to call into a data-dependency based trace such as vmap. Each trace that # wants to bind an axis name has to additionally implement `process_axis_index` # and put its main trace on the axis env stack. def _axis_index_bind(*, axis_name): def name_idx(name): frame = core.axis_frame(name) dynamic = core.thread_local_state.trace_state.trace_stack.dynamic if (frame.main_trace is None or dynamic.level > frame.main_trace.level): return core.Primitive.bind(axis_index_p, axis_name=name) else: trace = frame.main_trace.with_cur_sublevel() return trace.process_axis_index(frame) if not isinstance(axis_name, (tuple, list)): return name_idx(axis_name) else: inner_size = 1 index = 0 for name in reversed(axis_name): index += name_idx(name) * inner_size inner_size *= psum(1, name) return index axis_index_p.def_custom_bind(_axis_index_bind) def _vmap_process_axis_index(self, frame): assert frame.size is not None return batching.BatchTracer(self, lax.iota(np.int32, frame.size), 0) batching.BatchTrace.process_axis_index = _vmap_process_axis_index # type: ignore pdot_p = core.AxisPrimitive('pdot') core.axis_substitution_rules[pdot_p] = partial(_subst_all_names_in_param, 'axis_name') @pdot_p.def_impl def _pdot_impl(x, y, *, axis_name, pos_contract, pos_batch, precision): if axis_name: raise NameError(f"unbound axis name: {axis_name[0]}") return lax.dot_general(x, y, (pos_contract, pos_batch), precision=precision) @pdot_p.def_effectful_abstract_eval def _pdot_effectful_abstract_eval( x, y, *, axis_name, pos_contract, pos_batch, precision ): # TODO(frostig,mattjj,jekbradbury): check inputs have given axis names? if not len(set(axis_name)) == len(axis_name): raise ValueError pos_aval = lax.dot_general_p.abstract_eval( x, y, dimension_numbers=[pos_contract, pos_batch], precision=precision, preferred_element_type=None)[0] common_named_shape = core.join_named_shapes(x.named_shape, y.named_shape) named_shape = {name: size for name, size in common_named_shape.items() if name not in axis_name} out_aval = pos_aval.update(named_shape=named_shape) effects = {*map(core.NamedAxisEffect, axis_name)} return out_aval, effects def _pdot_vmap_collective_rule(axis_size, frame_name, _, vals_in, dims_in, *, axis_name, pos_contract, pos_batch, precision): x, y = vals_in x_dim, y_dim = dims_in x_pos_contract, y_pos_contract = pos_contract x_pos_contract = [x_dim] + [d + (d >= x_dim) for d in x_pos_contract] y_pos_contract = [y_dim] + [d + (d >= y_dim) for d in y_pos_contract] x_pos_batch, y_pos_batch = pos_batch x_pos_batch = [d + (d >= x_dim) for d in x_pos_batch] y_pos_batch = [d + (d >= y_dim) for d in y_pos_batch] remaining_axis_names = tuple(n for n in axis_name if n != frame_name) out = pdot_p.bind(x, y, axis_name=remaining_axis_names, pos_contract=(tuple(x_pos_contract), tuple(y_pos_contract)), pos_batch=(tuple(x_pos_batch), tuple(y_pos_batch)), precision=precision) return out, None batching.axis_primitive_batchers[pdot_p] = _pdot_vmap_collective_rule def _pdot_vmap_batching_rule(vals_in, dims_in, *, axis_name, pos_contract, pos_batch, precision): x, y = vals_in (pos_contract, pos_batch), result_batch_dim = lax._dot_general_batch_dim_nums( (x.ndim, y.ndim), dims_in, [pos_contract, pos_batch]) out = pdot_p.bind(x, y, axis_name=axis_name, pos_contract=pos_contract, pos_batch=pos_batch, precision=precision) return out, result_batch_dim batching.primitive_batchers[pdot_p] = _pdot_vmap_batching_rule def _pdot_lowering(x, y, *, axis_name, pos_contract, pos_batch, precision): local_out = lax.dot_general(x, y, dimension_numbers=(pos_contract, pos_batch), precision=precision, preferred_element_type=None) return psum(local_out, axis_name) if axis_name is not None else local_out mlir.register_lowering( pdot_p, mlir.lower_fun(_pdot_lowering, multiple_results=False)) def _pdot_transpose_lhs(g, x, y, *, axis_name, pos_contract, pos_batch, precision): # TODO: avals with names, call pbroadcast with axis_name return lax._dot_general_transpose_lhs( g, x, y, dimension_numbers=[pos_contract, pos_batch], precision=precision, preferred_element_type=None) def _pdot_transpose_rhs(g, x, y, *, axis_name, pos_contract, pos_batch, precision): # TODO: avals with names, call pbroadcast with axis_name return lax._dot_general_transpose_rhs( g, x, y, dimension_numbers=[pos_contract, pos_batch], precision=precision, preferred_element_type=None) ad.defbilinear(pdot_p, _pdot_transpose_lhs, _pdot_transpose_rhs) def _pgather_impl(src, idx, *, axes): assert all(isinstance(axis, int) for axis in axes) src_axes_front = moveaxis(src, axes, range(len(axes))) non_axes_shape = src_axes_front.shape[len(axes):] src_one_axis_front = src_axes_front.reshape((-1,) + non_axes_shape) slice_sizes = (1,) + non_axes_shape idx = lax.expand_dims(idx, (-1,)) offset_dims = tuple(range(idx.ndim - 1, idx.ndim + src_one_axis_front.ndim - 2)) dnums = slicing.GatherDimensionNumbers( offset_dims=offset_dims, collapsed_slice_dims=(0,), start_index_map=(0,)) return slicing.gather(src_one_axis_front, idx, dimension_numbers=dnums, slice_sizes=tuple(slice_sizes)) def _pgather_abstract_eval(src, idx, *, axes): # TODO: Avals with names rule: remove all axes from src, insert those from idx # The order is important, because it is ok to re-insert one of the deleted axes! shape = list(src.shape) for axis in sorted((a for a in axes if isinstance(a, int)), reverse=True): del shape[axis] shape = idx.shape + tuple(shape) return ShapedArray(shape, src.dtype) def _pgather_parallel_lowering(ctx, src, idx, *, axes): if any(not isinstance(axis, int) for axis in axes): raise NotImplementedError("pgather only supported in the SPMD lowering." "Please open a feature request!") return mlir.lower_fun(_pgather_impl, multiple_results=False)( ctx, src, idx, axes=axes) def _pgather_batcher(vals_in, dims_in, *, axes): src, idx = vals_in dsrc, didx = dims_in if didx is not batching.not_mapped and dsrc is not batching.not_mapped: # NB: We could just go forward with it and take the diagonal along the # two axes we get in the output, but that would be quite inefficient raise NotImplementedError("Please open a feature request!") elif didx is not batching.not_mapped: return pgather_p.bind(src, idx, axes=axes), didx elif dsrc is not batching.not_mapped: src_last_batched = moveaxis(src, dsrc, -1) result = pgather_p.bind(src_last_batched, idx, axes=axes) return result, result.ndim - 1 else: assert False # This shouldn't get called anyway def _pgather_collective_batcher(axis_size, frame_name, _, vals_in, dims_in, *, axes): src, idx = vals_in dsrc, didx = dims_in if dsrc is batching.not_mapped: raise ValueError("pgather axis {frame.name} is missing from the indexed value") if didx is not batching.not_mapped: # NOTE: This is allowed and the output would be mapped along this axis! raise NotImplementedError("Please open a feature request!") # Now source is mapped, idx is not new_axes = tuple(dsrc if axis == frame_name else axis + (dsrc <= axis) if isinstance(axis, int) else axis for axis in axes) # The result is not mapped, because we eliminate all axes, and those include # the batched axis. if all(isinstance(axis, int) for axis in axes): # We rewrite a purely positional pgather as a gather, because that one # is more fully featured (e.g. supports AD). return _pgather_impl(src, idx, axes=new_axes), batching.not_mapped else: return pgather_p.bind(src, idx, axes=new_axes), batching.not_mapped pgather_p = core.AxisPrimitive('pgather') pgather_p.def_impl(_pgather_impl) pgather_p.def_abstract_eval(_pgather_abstract_eval) mlir.register_lowering(pgather_p, _pgather_parallel_lowering) # TODO: Transpose? That requires adding pscatter... batching.primitive_batchers[pgather_p] = _pgather_batcher batching.axis_primitive_batchers[pgather_p] = _pgather_collective_batcher core.axis_substitution_rules[pgather_p] = partial(_subst_all_names_in_param, 'axes')