Source code for jax._src.custom_derivatives

# Copyright 2020 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from collections.abc import Sequence
import dataclasses
from functools import update_wrapper, reduce, partial
import inspect
from typing import Any, Callable, Generic, TypeVar

from jax._src import config
from jax._src import core
from jax._src import custom_api_util
from jax._src.custom_transpose import custom_transpose
from jax._src import dtypes
from jax._src import effects
from jax._src import linear_util as lu
from jax._src import traceback_util
from jax._src.ad_util import (
    stop_gradient_p, SymbolicZero, Zero, zeros_like_aval)
from jax._src.api_util import argnums_partial, flatten_fun_nokwargs
from jax._src.core import raise_to_shaped
from jax._src.errors import UnexpectedTracerError
from jax._src.interpreters import ad
from jax._src.interpreters import batching
from jax._src.interpreters import mlir
from jax._src.interpreters import partial_eval as pe
from jax._src.interpreters import xla
from jax._src.interpreters.batching import not_mapped
from jax._src.lax import lax
from jax._src.tree_util import (tree_flatten, tree_unflatten, tree_map,
                                treedef_is_leaf, treedef_tuple,
                                register_pytree_node_class, tree_leaves)
from jax._src.util import cache, safe_zip, safe_map, split_list, Unhashable


traceback_util.register_exclusion(__file__)

map = safe_map
zip = safe_zip


### util

def _resolve_kwargs(fun, args, kwargs):
  if isinstance(fun, partial):
    # functools.partial should have an opaque signature.
    fun = lambda *args, **kwargs: None
  ba = inspect.signature(fun).bind(*args, **kwargs)
  ba.apply_defaults()
  if ba.kwargs:
    raise TypeError("keyword arguments could not be resolved to positions")
  else:
    return ba.args

def _initial_style_jaxpr(fun, in_avals):
  jaxpr, _, consts, () = pe.trace_to_jaxpr_dynamic(fun, in_avals)
  return jaxpr, consts

def _close_jaxpr(jaxpr):
  return pe.close_jaxpr(pe.convert_constvars_jaxpr(jaxpr))

def _sum_tangents(_, x, *xs):
  return reduce(ad.add_tangents, xs, x)

def _zeros_like_pytree(x):
  return tree_map(Zero.from_value, x)

@partial(partial, tree_map)
def _stop_gradient(x):
  if isinstance(x, core.Tracer):
    return stop_gradient_p.bind(x)
  else:
    return x

# like the api_util.py function, but also grabs output avals for error checking
@lu.transformation_with_aux
def _flatten_fun_nokwargs(in_tree, *args_flat):
  py_args = tree_unflatten(in_tree, args_flat)
  ans = yield py_args, {}
  ans_flat, ans_tree = tree_flatten(ans)
  ans_avals = [core.raise_to_shaped(core.get_aval(x)) for x in ans_flat]
  yield ans_flat, (ans_tree, ans_avals)


### JVPs
ReturnValue = TypeVar('ReturnValue')

[docs] @custom_api_util.register_custom_decorator_type class custom_jvp(Generic[ReturnValue]): """Set up a JAX-transformable function for a custom JVP rule definition. This class is meant to be used as a function decorator. Instances are callables that behave similarly to the underlying function to which the decorator was applied, except when a differentiation transformation (like :py:func:`jax.jvp` or :py:func:`jax.grad`) is applied, in which case a custom user-supplied JVP rule function is used instead of tracing into and performing automatic differentiation of the underlying function's implementation. There are two instance methods available for defining the custom JVP rule: :py:func:`~jax.custom_jvp.defjvp` for defining a *single* custom JVP rule for all the function's inputs, and for convenience :py:func:`~jax.custom_jvp.defjvps`, which wraps :py:func:`~jax.custom_jvp.defjvp`, and allows you to provide separate definitions for the partial derivatives of the function w.r.t. each of its arguments. For example:: @jax.custom_jvp def f(x, y): return jnp.sin(x) * y @f.defjvp def f_jvp(primals, tangents): x, y = primals x_dot, y_dot = tangents primal_out = f(x, y) tangent_out = jnp.cos(x) * x_dot * y + jnp.sin(x) * y_dot return primal_out, tangent_out For a more detailed introduction, see the tutorial_. .. _tutorial: https://jax.readthedocs.io/en/latest/notebooks/Custom_derivative_rules_for_Python_code.html """ fun: Callable[..., ReturnValue] nondiff_argnums: tuple[int, ...] jvp: Callable[..., tuple[ReturnValue, ReturnValue]] | None = None symbolic_zeros: bool = False
[docs] def __init__(self, fun: Callable[..., ReturnValue], nondiff_argnums: tuple[int, ...] = (), ): update_wrapper(self, fun) self.fun = fun self.nondiff_argnums = nondiff_argnums
__getattr__ = custom_api_util.forward_attr def defjvp(self, jvp: Callable[..., tuple[ReturnValue, ReturnValue]], symbolic_zeros: bool = False, ) -> Callable[..., tuple[ReturnValue, ReturnValue]]: """Define a custom JVP rule for the function represented by this instance. Args: jvp: a Python callable representing the custom JVP rule. When there are no ``nondiff_argnums``, the ``jvp`` function should accept two arguments, where the first is a tuple of primal inputs and the second is a tuple of tangent inputs. The lengths of both tuples are equal to the number of parameters of the ``custom_jvp`` function. The ``jvp`` function should produce as output a pair where the first element is the primal output and the second element is the tangent output. Elements of the input and output tuples may be arrays or any nested tuples/lists/dicts thereof. symbolic_zeros: boolean, indicating whether the rule should be passed objects representing static symbolic zeros in its tangent argument in correspondence with unperturbed values; otherwise, only standard JAX types (e.g. array-likes) are passed. Setting this option to ``True`` allows a JVP rule to detect whether certain inputs are not involved in differentiation, but at the cost of needing special handling for these objects (which e.g. can't be passed into jax.numpy functions). Default ``False``. Returns: None. Example:: @jax.custom_jvp def f(x, y): return jnp.sin(x) * y @f.defjvp def f_jvp(primals, tangents): x, y = primals x_dot, y_dot = tangents primal_out = f(x, y) tangent_out = jnp.cos(x) * x_dot * y + jnp.sin(x) * y_dot return primal_out, tangent_out """ self.jvp = jvp self.symbolic_zeros = symbolic_zeros return jvp def defjvps(self, *jvps: Callable[..., ReturnValue] | None): """Convenience wrapper for defining JVPs for each argument separately. This convenience wrapper cannot be used together with ``nondiff_argnums``. Args: *jvps: a sequence of functions, one for each positional argument of the ``custom_jvp`` function. Each function takes as arguments the tangent value for the corresponding primal input, the primal output, and the primal inputs. See the example below. Returns: None. Example:: @jax.custom_jvp def f(x, y): return jnp.sin(x) * y f.defjvps(lambda x_dot, primal_out, x, y: jnp.cos(x) * x_dot * y, lambda y_dot, primal_out, x, y: jnp.sin(x) * y_dot) """ if self.nondiff_argnums: raise TypeError("Can't use ``defjvps`` with ``nondiff_argnums``.") def jvp(primals, tangents): primal_out = self(*primals) zeros = _zeros_like_pytree(primal_out) all_tangents_out = [jvp(t, primal_out, *primals) if jvp else zeros for t, jvp in zip(tangents, jvps)] tangent_out = tree_map(_sum_tangents, primal_out, *all_tangents_out) return primal_out, tangent_out self.defjvp(jvp) @traceback_util.api_boundary def __call__(self, *args: Any, **kwargs: Any) -> ReturnValue: # pytype: disable=invalid-annotation primal_name = getattr(self.fun, '__name__', str(self.fun)) if not self.jvp: msg = f"No JVP defined for custom_jvp function {primal_name} using defjvp." raise AttributeError(msg) jvp_name = getattr(self.jvp, '__name__', str(self.jvp)) args = _resolve_kwargs(self.fun, args, kwargs) if self.nondiff_argnums: nondiff_argnums = set(self.nondiff_argnums) args = tuple(_stop_gradient(x) if i in nondiff_argnums else x for i, x in enumerate(args)) diff_argnums = [i for i in range(len(args)) if i not in nondiff_argnums] f_, dyn_args = argnums_partial(lu.wrap_init(self.fun), diff_argnums, args, require_static_args_hashable=False) static_args = [args[i] for i in self.nondiff_argnums] jvp = _add_args(lu.wrap_init(self.jvp), static_args) else: f_, dyn_args = lu.wrap_init(self.fun), args # type: ignore jvp = lu.wrap_init(self.jvp) args_flat, in_tree = tree_flatten(dyn_args) flat_fun, out_type1 = _flatten_fun_nokwargs(f_, in_tree) flat_jvp, out_type2 = _flatten_jvp(jvp, primal_name, jvp_name, in_tree, out_type1) out_flat = custom_jvp_call_p.bind(flat_fun, flat_jvp, *args_flat, symbolic_zeros=self.symbolic_zeros) _, (out_tree, _) = lu.merge_linear_aux(out_type1, out_type2) return tree_unflatten(out_tree, out_flat)
def _add_args(f, extra_args): return _add_args_(f, tuple(Unhashable(arg) for arg in extra_args)) @lu.transformation def _add_args_(extra_args, *args, **kwargs): extra_args = tuple(arg.val for arg in extra_args) all_args = (extra_args + args) yield (yield all_args, kwargs) @partial(lu.transformation_with_aux, use_eq_store=True) def _flatten_jvp(primal_name, jvp_name, in_tree, maybe_out_type, *args): primals_in, tangents_in = split_list(args, [len(args) // 2]) py_primals = tree_unflatten(in_tree, primals_in) py_tangents = tree_unflatten(in_tree, tangents_in) pair_out = yield (py_primals, py_tangents), {} if not isinstance(pair_out, (list, tuple)) or len(pair_out) != 2: msg = (f"Custom JVP rule {jvp_name} for function {primal_name} " "must produce a pair (list or tuple of length two) representing " f"primal and tangent outputs, but got {pair_out}.") raise TypeError(msg) py_primals_out, py_tangents_out = pair_out primals_out, out_tree = tree_flatten(py_primals_out) tangents_out, out_tree2 = tree_flatten(py_tangents_out) primal_avals = [core.raise_to_shaped(core.get_aval(x)) for x in primals_out] if out_tree != out_tree2: msg = (f"Custom JVP rule {jvp_name} for function {primal_name} must " "produce primal and tangent outputs with equal container (pytree) " f"structures, but got {out_tree} and {out_tree2} respectively.") raise TypeError(msg) # If the primal function already ran, check out_tree agreement. try: out_type_ = maybe_out_type() except lu.StoreException: out_type_ = None if out_type_ is not None: out_tree_, primal_avals_ = out_type_ ty_tree = tree_unflatten(out_tree , [a.str_short() for a in primal_avals]) ty_tree_ = tree_unflatten(out_tree_, [a.str_short() for a in primal_avals_]) if out_tree_ != out_tree: m = (f"Custom JVP rule {jvp_name} for function {primal_name} must " "produce a pair (list or tuple of length two) " "where the first element represents the primal output " "(equal in value to the output of the custom_jvp-decorated function " f"{primal_name}, " "and in particular of the same container/pytree structure), but " "instead the JVP rule output's first element had container/pytree " "structure:\n" f""" {str(ty_tree ).replace("'", "")}\n""" f"while the custom_jvp-decorated function {primal_name} had output " "container/pytree structure:\n" f""" {str(ty_tree_).replace("'", "")}.""") raise TypeError(m) if not all(map(core.typematch, primal_avals, primal_avals_)): m = (f"Custom JVP rule {jvp_name} for function {primal_name} must " "produce a pair (list or tuple of length two) " "where the first element represents the primal output " "(equal in value to the output of the custom_jvp-decorated function " f"{primal_name}, " "and in particular with leaves of the same shape/dtype), but " "instead the JVP rule output's first element had shapes/dtypes of:\n" f""" {str(ty_tree ).replace("'", "")}\n""" f"while the custom_jvp-decorated function {primal_name} had output " "shapes/dtypes of:\n" f""" {str(ty_tree_).replace("'", "")}""") raise TypeError(m) # TODO(mattjj): compare primals' tangent types to tangent objects' types primal_avals_out = [ raise_to_shaped(core.get_aval(x), weak_type=False).strip_named_shape() for x in primals_out] tangent_avals_out = [ raise_to_shaped(core.get_aval(t), weak_type=False).strip_named_shape() if type(t) is not SymbolicZero else t.aval.strip_weak_type() for t in tangents_out] if primal_avals_out != tangent_avals_out: if len(primal_avals_out) == 1: (av1,), (av2,) = primal_avals_out, tangent_avals_out msg = ("Custom JVP rule must produce primal and tangent outputs with " "equal shapes and dtypes, but got {} and {} respectively.") raise TypeError(msg.format(av1.str_short(), av2.str_short())) else: msg = ("Custom JVP rule must produce primal and tangent outputs with " "equal shapes and dtypes, but got:\n{}") disagreements = ( f" primal {av1.str_short()} for tangent {av2.str_short()}" for av1, av2 in zip(primal_avals_out, tangent_avals_out) if av1 != av2) raise TypeError(msg.format('\n'.join(disagreements))) yield primals_out + tangents_out, (out_tree, primal_avals) class CustomJVPCallPrimitive(core.Primitive): multiple_results = True def bind(self, fun, jvp, *args, symbolic_zeros): args = map(core.full_lower, args) top_trace = core.find_top_trace(args) fun, env_trace_todo1 = process_env_traces( fun, self, top_trace and top_trace.level, False) jvp, env_trace_todo2 = process_env_traces( jvp, self, top_trace and top_trace.level, True) tracers = map(top_trace.full_raise, args) # type: ignore outs = top_trace.process_custom_jvp_call(self, fun, jvp, tracers, # type: ignore symbolic_zeros=symbolic_zeros) # type: ignore _, env_trace_todo = lu.merge_linear_aux(env_trace_todo1, env_trace_todo2) return core.apply_todos(env_trace_todo, map(core.full_lower, outs)) def impl(self, fun, _, *args): with core.new_sublevel(): return fun.call_wrapped(*args) def post_process(self, trace, out_tracers, jvp_was_run: bool): return trace.post_process_custom_jvp_call(out_tracers, jvp_was_run) def get_bind_params(self, params): new_params = dict(params) call_jaxpr = new_params.pop('call_jaxpr') num_consts = new_params.pop('num_consts') jvp_jaxpr_thunk = new_params.pop('jvp_jaxpr_thunk') fun = lu.wrap_init(core.jaxpr_as_fun(call_jaxpr)) jvp = lift_jvp(num_consts, jvp_jaxpr_thunk) return [fun, jvp], new_params def lift_jvp(num_consts: int, jvp_jaxpr_thunk: Callable) -> lu.WrappedFun: @lu.wrap_init def jvp(*xs): n, ragged = divmod(len(xs), 2) assert not ragged primals, tangents = xs[num_consts:n], xs[n+num_consts:] zeros = [type(t) is SymbolicZero for t in tangents] jvp_jaxpr, jvp_consts, out_zeros = jvp_jaxpr_thunk(*zeros) nonzero_tangents = [t for t in tangents if type(t) is not SymbolicZero] out = core.eval_jaxpr(jvp_jaxpr, jvp_consts, *primals, *nonzero_tangents) out_primals, nz_out_tangents = split_list(out, [len(out_zeros)]) nz_out_tangents_ = iter(nz_out_tangents) out_tangents = [SymbolicZero(core.get_aval(p).at_least_vspace()) if z else next(nz_out_tangents_) for p, z in zip(out_primals, out_zeros)] assert next(nz_out_tangents_, None) is None return [*out_primals, *out_tangents] return jvp @partial(lu.transformation_with_aux, use_eq_store=True) def process_env_traces(primitive, level: int, jvp_was_run: bool, *args): outs = yield args, {} todo = [] while True: tracers = [x for x in outs if isinstance(x, core.Tracer) and (level is None or x._trace.level > level)] if tracers: ans = max(tracers, key=lambda x: x._trace.level) else: break trace = ans._trace.main.with_cur_sublevel() outs = map(trace.full_raise, outs) outs, cur_todo = primitive.post_process(trace, outs, jvp_was_run) todo.append(cur_todo) yield outs, tuple(todo) # Ensure the aux output is immutable effects.custom_derivatives_allowed_effects.add_type(lax.InOutFeedEffect) custom_jvp_call_p = CustomJVPCallPrimitive('custom_jvp_call') def _custom_jvp_call_typecheck(_, *in_avals, call_jaxpr, jvp_jaxpr_thunk, num_consts, symbolic_zeros): # TODO(mattjj): could do more checking here... del in_avals, jvp_jaxpr_thunk, num_consts disallowed_effects = effects.custom_derivatives_allowed_effects.filter_not_in(call_jaxpr.effects) if disallowed_effects: raise NotImplementedError( f'Effects not supported in `custom_jvp`: {disallowed_effects}') return call_jaxpr.out_avals, call_jaxpr.effects core.custom_typechecks[custom_jvp_call_p] = _custom_jvp_call_typecheck def _custom_jvp_call_mlir_translation(ctx, *args, call_jaxpr, jvp_jaxpr_thunk, num_consts, symbolic_zeros): del jvp_jaxpr_thunk, num_consts, symbolic_zeros args_ = map(mlir.wrap_singleton_ir_values, args) consts = mlir._ir_consts(call_jaxpr.consts) out, tokens = mlir.jaxpr_subcomp(ctx.module_context, call_jaxpr.jaxpr, ctx.name_stack, ctx.tokens_in, consts, *args_, dim_var_values=ctx.dim_var_values) ctx.set_tokens_out(tokens) return out mlir.register_lowering(custom_jvp_call_p, _custom_jvp_call_mlir_translation) # If a (multi)linear function is defined with a custom jvp, then # custom_jvp_call_ can appear in jaxprs to be transposed. Since it's already # been linearized, we can drop the jvp rule. def _custom_jvp_call_transpose(params, jaxpr, args, ct, _): del params return ad.backward_pass(jaxpr.jaxpr, None, jaxpr.consts, args, ct) ad.primitive_transposes[custom_jvp_call_p] = _custom_jvp_call_transpose ### VJPs
[docs] @custom_api_util.register_custom_decorator_type class custom_vjp(Generic[ReturnValue]): """Set up a JAX-transformable function for a custom VJP rule definition. This class is meant to be used as a function decorator. Instances are callables that behave similarly to the underlying function to which the decorator was applied, except when a reverse-mode differentiation transformation (like :py:func:`jax.grad`) is applied, in which case a custom user-supplied VJP rule function is used instead of tracing into and performing automatic differentiation of the underlying function's implementation. There is a single instance method, :py:func:`~jax.custom_vjp.defvjp`, which may be used to define the custom VJP rule. This decorator precludes the use of forward-mode automatic differentiation. For example:: @jax.custom_vjp def f(x, y): return jnp.sin(x) * y def f_fwd(x, y): return f(x, y), (jnp.cos(x), jnp.sin(x), y) def f_bwd(res, g): cos_x, sin_x, y = res return (cos_x * g * y, sin_x * g) f.defvjp(f_fwd, f_bwd) For a more detailed introduction, see the tutorial_. .. _tutorial: https://jax.readthedocs.io/en/latest/notebooks/Custom_derivative_rules_for_Python_code.html """
[docs] def __init__(self, fun: Callable[..., ReturnValue], nondiff_argnums: tuple[int, ...] = ()): update_wrapper(self, fun) self.fun = fun self.nondiff_argnums = nondiff_argnums self.fwd: Callable[..., tuple[ReturnValue, Any]] | None = None self.bwd: Callable[..., tuple[Any, ...]] | None = None self.symbolic_zeros = False
__getattr__ = custom_api_util.forward_attr def defvjp(self, fwd: Callable[..., tuple[ReturnValue, Any]], bwd: Callable[..., tuple[Any, ...]], symbolic_zeros: bool = False, ) -> None: """Define a custom VJP rule for the function represented by this instance. Args: fwd: a Python callable representing the forward pass of the custom VJP rule. When there are no ``nondiff_argnums``, the ``fwd`` function has the same input signature as the underlying primal function. It should return as output a pair, where the first element represents the primal output and the second element represents any "residual" values to store from the forward pass for use on the backward pass by the function ``bwd``. Input arguments and elements of the output pair may be arrays or nested tuples/lists/dicts thereof. bwd: a Python callable representing the backward pass of the custom VJP rule. When there are no ``nondiff_argnums``, the ``bwd`` function takes two arguments, where the first is the "residual" values produced on the forward pass by ``fwd``, and the second is the output cotangent with the same structure as the primal function output. The output of ``bwd`` must be a tuple of length equal to the number of arguments of the primal function, and the tuple elements may be arrays or nested tuples/lists/dicts thereof so as to match the structure of the primal input arguments. symbolic_zeros: boolean, determining whether to indicate symbolic zeros to the ``fwd`` and ``bwd`` rules. Enabling this option allows custom derivative rules to detect when certain inputs, and when certain output cotangents, are not involved in differentiation. If ``True``: * ``fwd`` must accept, in place of each leaf value ``x`` in the pytree comprising an argument to the original function, an object (of type ``jax.custom_derivatives.CustomVJPPrimal``) with two attributes instead: ``value`` and ``perturbed``. The ``value`` field is the original primal argument, and ``perturbed`` is a boolean. The ``perturbed`` bit indicates whether the argument is involved in differentiation (i.e., if it is ``False``, then the corresponding Jacobian "column" is zero). * ``bwd`` will be passed objects representing static symbolic zeros in its cotangent argument in correspondence with unperturbed values; otherwise, only standard JAX types (e.g. array-likes) are passed. Setting this option to ``True`` allows these rules to detect whether certain inputs and outputs are not involved in differentiation, but at the cost of special handling. For instance: * The signature of ``fwd`` changes, and the objects it is passed cannot be output from the rule directly. * The ``bwd`` rule is passed objects that are not entirely array-like, and that cannot be passed to most ``jax.numpy`` functions. * Any custom pytree nodes involved in the primal function's arguments must accept, in their unflattening functions, the two-field record objects that are given as input leaves to the ``fwd`` rule. Default ``False``. Returns: None. Example:: @jax.custom_vjp def f(x, y): return jnp.sin(x) * y def f_fwd(x, y): return f(x, y), (jnp.cos(x), jnp.sin(x), y) def f_bwd(res, g): cos_x, sin_x, y = res return (cos_x * g * y, sin_x * g) f.defvjp(f_fwd, f_bwd) """ self.fwd = fwd self.bwd = bwd self.symbolic_zeros = symbolic_zeros @traceback_util.api_boundary def __call__(self, *args: Any, **kwargs: Any) -> ReturnValue: # pytype: disable=invalid-annotation primal_name = getattr(self.fun, '__name__', str(self.fun)) if not self.fwd or not self.bwd: msg = f"No VJP defined for custom_vjp function {primal_name} using defvjp." raise AttributeError(msg) fwd_name = getattr(self.fwd, '__name__', str(self.fwd)) args = _resolve_kwargs(self.fun, args, kwargs) if config.enable_custom_vjp_by_custom_transpose.value: if self.nondiff_argnums: raise NotImplementedError( 'nondiff_argnums not implemented for new custom_vjp') return custom_vjp_by_custom_transpose(self.fun, self.fwd, self.bwd)(*args) else: if self.nondiff_argnums: for i in self.nondiff_argnums: _check_for_tracers(args[i]) nondiff_argnums = set(self.nondiff_argnums) dyn_argnums = [i for i in range(len(args)) if i not in nondiff_argnums] f_, dyn_args = argnums_partial(lu.wrap_init(self.fun), dyn_argnums, args, require_static_args_hashable=False) static_args = [args[i] for i in self.nondiff_argnums] fwd, _ = argnums_partial(lu.wrap_init(self.fwd), dyn_argnums, args, require_static_args_hashable=False) bwd = _add_args(lu.wrap_init(self.bwd), static_args) else: f_, dyn_args = lu.wrap_init(self.fun), args fwd, bwd = lu.wrap_init(self.fwd), lu.wrap_init(self.bwd) args_flat, in_tree = tree_flatten(dyn_args) in_avals = [core.raise_to_shaped(core.get_aval(x)) for x in args_flat] flat_fun, out_type = _flatten_fun_nokwargs(f_, in_tree) flat_fwd, out_trees = _flatten_fwd(fwd, self.symbolic_zeros, primal_name, fwd_name, in_tree, out_type) flat_bwd = _flatten_bwd(bwd, in_tree, in_avals, out_trees).call_wrapped out_flat = custom_vjp_call_p.bind(flat_fun, flat_fwd, flat_bwd, *args_flat, out_trees=out_trees, symbolic_zeros=self.symbolic_zeros) _, (out_tree, _) = lu.merge_linear_aux(out_type, out_trees) return tree_unflatten(out_tree, out_flat)
@dataclasses.dataclass class CustomVJPPrimal: """Primal to a ``custom_vjp``'s forward rule when ``symbolic_zeros`` is set""" value: Any perturbed: bool def custom_vjp_primal_tree_values(tree): """Strips away perturbation information from forward rule arguments. This is a helper function for user with the ``symbolic_zeros`` option to the ``defvjp`` method of a ``custom_vjp``-decorated function. In ``symbolic_zeros`` mode, the custom forward rule receives arguments whose pytree leaves are records with a ``value`` attribute that carries the primal argument. This is a way to convert such argument trees back to their original form, replacing each such record with its carried value at each leaf. """ def value(leaf): if type(leaf) is not CustomVJPPrimal: raise TypeError(f"unexpected leaf type {type(leaf)}") return leaf.value return tree_map(value, tree) def _check_for_tracers(x): for leaf in tree_leaves(x): if isinstance(leaf, core.Tracer): msg = ("Found a JAX Tracer object passed as an argument to a custom_vjp " "function in a position indicated by nondiff_argnums as " "non-differentiable. Tracers cannot be passed as non-differentiable " "arguments to custom_vjp functions; instead, nondiff_argnums should " "only be used for arguments that can't be or contain JAX tracers, " "e.g. function-valued arguments. In particular, array-valued " "arguments should typically not be indicated as nondiff_argnums.") raise UnexpectedTracerError(msg) @partial(lu.transformation_with_aux, use_eq_store=True) def _flatten_fwd(symbolic_zeros, primal_name, fwd_name, in_tree, maybe_out_type, *args): if symbolic_zeros: args = [CustomVJPPrimal(x, z) for x, z in zip(args[::2], args[1::2])] else: args = args[::2] py_args = tree_unflatten(in_tree, args) pair_out = yield py_args, {} if not isinstance(pair_out, (list, tuple)) or len(pair_out) != 2: msg = (f"Custom VJP fwd rule {fwd_name} for function {primal_name} " "must produce a pair (list or tuple of length two) where the first " "element represents the primal output (equal to those of the " f"custom_vjp-decorated function {primal_name}) and the " "second element represents residuals (i.e. values stored from the " "forward pass for use on the backward pass), but " f"instead of a pair the fwd rule {fwd_name} produced {pair_out}.") raise TypeError(msg) py_primals_out, res = pair_out primals_out, out_tree = tree_flatten(py_primals_out) res, res_tree = tree_flatten(res) primal_avals = [core.raise_to_shaped(core.get_aval(x)) for x in primals_out] # If the primal function already ran, check out_tree agreement. try: out_type_ = maybe_out_type() except lu.StoreException: out_type_ = None if out_type_ is not None: out_tree_, primal_avals_ = out_type_ ty_tree = tree_unflatten(out_tree , [a.str_short() for a in primal_avals]) ty_tree_ = tree_unflatten(out_tree_, [a.str_short() for a in primal_avals_]) if out_tree_ != out_tree: m = (f"Custom VJP fwd rule {fwd_name} for function {primal_name} " "must produce a pair (list or tuple of length two) where the first " "element represents the primal output " "(equal to the output of the custom_vjp-decorated function " f"{primal_name}) and the " "second element represents residuals (i.e. values stored from the " "forward pass for use on the backward pass), but " "instead the fwd rule output's first element had container/pytree " "structure:\n" f""" {str(ty_tree ).replace("'", "")}\n""" f"while the custom_vjp-decorated function {primal_name} had output " "container/pytree structure:\n" f""" {str(ty_tree_).replace("'", "")}.""") raise TypeError(m) if not all(map(core.typematch, primal_avals, primal_avals_)): m = (f"Custom VJP fwd rule {fwd_name} for function {primal_name} must " "produce a pair (list or tuple of length two) " "where the first element represents the primal output " "(equal to the output of the custom_vjp-decorated function " f"{primal_name}) and the second element represents residuals " "(i.e. values stored from the forward pass for use on the " "backward pass), but " "instead the fwd rule output's first element had shapes/dtypes of:\n" f""" {str(ty_tree ).replace("'", "")}\n""" f"while the custom_vjp-decorated function {primal_name} had output " "shapes/dtypes of:\n" f""" {str(ty_tree_).replace("'", "")}""") raise TypeError(m) yield (*res, *primals_out), (out_tree, res_tree) @lu.transformation def _flatten_bwd(in_tree, in_avals, out_trees, *args): out_tree, res_tree = out_trees() assert len(args) == res_tree.num_leaves + out_tree.num_leaves res, cts_out = split_list(args, [res_tree.num_leaves]) py_res = tree_unflatten(res_tree, res) py_cts_out = tree_unflatten(out_tree, cts_out) py_cts_in = yield (py_res, py_cts_out), {} # For each None in py_cts_in, indicating an argument for which the rule # produces no cotangent, we replace it with a pytree with the structure of the # corresponding subtree of in_tree and with leaves of a non-pytree sentinel # object, to be replaced with Nones in the final returned result. zero = object() # non-pytree sentinel to replace Nones in py_cts_in dummy = tree_unflatten(in_tree, [object()] * in_tree.num_leaves) cts_in_flat = [] def append(x, d): num_leaves = len(tree_flatten(d)[0]) if x is None and d is not None: cts_in_flat.extend([zero] * num_leaves) elif x is not None: cts_in_flat.extend([x] * num_leaves) return x try: if not isinstance(py_cts_in, tuple): raise ValueError tree_map(append, py_cts_in, dummy, is_leaf=lambda x: x is None) except ValueError: _, in_tree2 = tree_flatten(py_cts_in) msg = ("Custom VJP rule must produce an output with the same container " "(pytree) structure as the args tuple of the primal function, " "and in particular must produce a tuple of length equal to the " "number of arguments to the primal function, but got VJP output " "structure {} for primal input structure {}.") raise TypeError(msg.format(in_tree2, in_tree)) from None # Ignore any None cotangents, and any corresponding to inputs for which the # type doesn't equal the tangent type (i.e. float0s) # TODO(mattjj): change this to check if tangent type represents 0dim vspace yield [Zero(a.at_least_vspace()) if ct is zero or a != a.at_least_vspace() else ct for a, ct in zip(in_avals, cts_in_flat)] class CustomVJPCallPrimitive(core.CallPrimitive): initial_style: core.Primitive def bind(self, fun, fwd, bwd, *args, out_trees, symbolic_zeros): args = map(core.full_lower, args) top_trace = core.find_top_trace(args) fun, env_trace_todo1 = process_env_traces( fun, self, top_trace and top_trace.level, False) fwd, env_trace_todo2 = process_env_traces_fwd( fwd, top_trace and top_trace.level, out_trees) tracers = map(top_trace.full_raise, args) # type: ignore bwd_ = lambda *args: bwd(*args) outs = top_trace.process_custom_vjp_call(self, fun, fwd, bwd_, tracers, out_trees=out_trees, symbolic_zeros=symbolic_zeros) fst, env_trace_todo = lu.merge_linear_aux(env_trace_todo1, env_trace_todo2) if fst: return core.apply_todos(env_trace_todo, map(core.full_lower, outs)) else: env_trace_todo, bwd_transform = env_trace_todo bwd = _apply_bwd_transform(bwd_transform, bwd) return core.apply_todos(env_trace_todo, map(core.full_lower, outs)) def impl(self, fun, fwd, bwd, *args, out_trees): del fwd, bwd, out_trees with core.new_sublevel(): return fun.call_wrapped(*args) def post_process(self, trace, out_tracers, params): return trace.post_process_custom_vjp_call(out_tracers, params) custom_vjp_call_p = CustomVJPCallPrimitive('custom_vjp_call') @partial(lu.transformation_with_aux, use_eq_store=True) def process_env_traces_fwd(level: int, out_trees, *args): outs = yield args, {} todo = [] bwd_transforms = [] while True: tracers = [x for x in outs if isinstance(x, core.Tracer) and (level is None or x._trace.level > level)] if tracers: ans = max(tracers, key=lambda x: x._trace.level) else: break trace = ans._trace.main.with_cur_sublevel() outs = map(trace.full_raise, outs) outs, cur_todo, bwd_xform = trace.post_process_custom_vjp_call_fwd(outs, out_trees) todo.append(cur_todo) bwd_transforms.append(bwd_xform) yield outs, (tuple(todo), tuple(bwd_transforms)) def _apply_bwd_transform(todos, bwd): todos_list = list(todos) while todos_list: bwd = todos_list.pop()(bwd) return bwd def _custom_vjp_call_jaxpr_impl(*args, fun_jaxpr, **_): return core.jaxpr_as_fun(fun_jaxpr)(*args) def _custom_vjp_call_jaxpr_abstract_eval(*_, fun_jaxpr, **__): disallowed_effects = effects.custom_derivatives_allowed_effects.filter_not_in(fun_jaxpr.effects) if disallowed_effects: raise NotImplementedError( f'Effects not supported in `custom_vjp`: {disallowed_effects}') return fun_jaxpr.out_avals, fun_jaxpr.effects custom_vjp_call_jaxpr_p = core.AxisPrimitive('custom_vjp_call_jaxpr') custom_vjp_call_jaxpr_p.multiple_results = True custom_vjp_call_jaxpr_p.def_impl(_custom_vjp_call_jaxpr_impl) custom_vjp_call_jaxpr_p.def_effectful_abstract_eval(_custom_vjp_call_jaxpr_abstract_eval) CustomVJPCallPrimitive.initial_style = custom_vjp_call_jaxpr_p mlir.register_lowering(custom_vjp_call_jaxpr_p, mlir.lower_fun( _custom_vjp_call_jaxpr_impl, multiple_results=True)) def _custom_vjp_call_jaxpr_jvp( primals, tangents, *, fun_jaxpr: core.ClosedJaxpr, fwd_jaxpr_thunk: Callable[..., tuple[core.Jaxpr, Sequence[Any]]], num_consts: int, bwd: Callable, out_trees: Callable, symbolic_zeros: bool): _, args = split_list(primals, [num_consts]) consts_dot, args_dot = split_list(tangents, [num_consts]) if any(type(t) is not Zero for t in consts_dot): raise ad.CustomVJPException() zeros = [type(t) is not Zero for t in args_dot] fwd_jaxpr, fwd_consts = fwd_jaxpr_thunk(*zeros) # consts can be tracers! _, res_tree = out_trees() res_and_primals_out = core.eval_jaxpr(fwd_jaxpr, fwd_consts, *args) res, primals_out = split_list(res_and_primals_out, [res_tree.num_leaves]) avals_out = [raise_to_shaped(core.get_aval(x)) for x in primals_out] args_dot = map(ad.instantiate_zeros, args_dot) # Cast float0 to zeros with the primal dtype because custom vjp rules don't # currently handle float0s args_dot = map(ad.replace_float0s, args, args_dot) tangents_out = ad.custom_lin_p.bind( *res, *args_dot, num_res=res_tree.num_leaves, bwd=bwd, out_avals=avals_out, symbolic_zeros=symbolic_zeros) tangents_out = map(lax.tie_p.bind, primals_out, tangents_out) tangents_out = map(ad.recast_to_float0, primals_out, tangents_out) return primals_out, tangents_out ad.primitive_jvps[custom_vjp_call_jaxpr_p] = _custom_vjp_call_jaxpr_jvp def _custom_vjp_call_jaxpr_vmap( spmd_axis_name, axis_size, axis_name, main_type, args, in_dims, *, fun_jaxpr: core.ClosedJaxpr, fwd_jaxpr_thunk: Callable[..., tuple[core.Jaxpr, Sequence[Any]]], num_consts: int, bwd: Callable, out_trees: Callable, symbolic_zeros: bool): args = [batching.moveaxis(x, d, 0) if d is not not_mapped and d != 0 else x for x, d in zip(args, in_dims)] in_batched = [d is not not_mapped for d in in_dims] _, args_batched = split_list(in_batched, [num_consts]) batched_fun_jaxpr, out_batched = batching.batch_jaxpr( fun_jaxpr, axis_size, in_batched, False, axis_name, spmd_axis_name, main_type) out_dims1 = [0 if b else not_mapped for b in out_batched] out_dims2 = [] @pe._memoize def batched_fwd_jaxpr_thunk(*zeros): fwd_jaxpr = core.ClosedJaxpr(*fwd_jaxpr_thunk(*zeros)) # consts can be tracers batched_fwd_jaxpr, out_batched = batching.batch_jaxpr( fwd_jaxpr, axis_size, args_batched, False, axis_name, spmd_axis_name, main_type) out_dims2.append([0 if b else not_mapped for b in out_batched]) return batched_fwd_jaxpr.jaxpr, batched_fwd_jaxpr.consts fwd_args_batched = [0 if b else not_mapped for b in args_batched] fwd_out_dims = lambda: out_dims2[0] batched_bwd = batching.batch_custom_vjp_bwd( bwd, axis_name, axis_size, fwd_out_dims, fwd_args_batched, main_type, spmd_axis_name) batched_outs = custom_vjp_call_jaxpr_p.bind( *args, fun_jaxpr=batched_fun_jaxpr, fwd_jaxpr_thunk=batched_fwd_jaxpr_thunk, bwd=batched_bwd, num_consts=num_consts, out_trees=out_trees, symbolic_zeros=symbolic_zeros) out_dims = out_dims2[0] if out_dims2 else out_dims1 return batched_outs, out_dims batching.spmd_axis_primitive_batchers[custom_vjp_call_jaxpr_p] = \ _custom_vjp_call_jaxpr_vmap batching.axis_primitive_batchers[custom_vjp_call_jaxpr_p] = partial( _custom_vjp_call_jaxpr_vmap, None) xla.register_initial_style_primitive(custom_vjp_call_jaxpr_p) batching.primitive_batchers[ad.custom_lin_p] = ad.raise_custom_vjp_error_on_jvp mlir.register_lowering(ad.custom_lin_p, ad.raise_custom_vjp_error_on_jvp)
[docs] def custom_gradient(fun): """Convenience function for defining custom VJP rules (aka custom gradients). While the canonical way to define custom VJP rules is via ``jax.custom_vjp``, the ``custom_gradient`` convenience wrapper follows TensorFlow's ``tf.custom_gradient`` API. The difference here is that ``custom_gradient`` can be used as a decorator on one function that returns both the primal value (representing the output of the mathematical function to be differentiated) and the VJP (gradient) function. See https://www.tensorflow.org/api_docs/python/tf/custom_gradient. If the mathematical function to be differentiated has Haskell-like signature ``a -> b``, then the Python callable ``fun`` should have the signature ``a -> (b, CT b --o CT a)`` where we use ``CT x`` to denote a cotangent type for ``x`` and the ``--o`` arrow to denote a linear function. See the example below. That is, ``fun`` should return a pair where the first element represents the value of the mathematical function to be differentiated and the second element is a function to be called on the backward pass of reverse-mode automatic differentiation (i.e. the "custom gradient" function). The function returned as the second element of the output of ``fun`` can close over intermediate values computed when evaluating the function to be differentiated. That is, use lexical closure to share work between the forward pass and the backward pass of reverse-mode automatic differentiation. However, it cannot perform Python control flow which depends on the values of the closed-over intermediate values or its cotangent arguments; if the function includes such control flow, an error is raised. Args: fun: a Python callable specifying both the mathematical function to be differentiated and its reverse-mode differentiation rule. It should return a pair consisting of an output value and a Python callable that represents the custom gradient function. Returns: A Python callable that accepts the same arguments as ``fun`` and returns the output value specified by the first element of ``fun``'s output pair. For example: >>> @jax.custom_gradient ... def f(x): ... return x ** 2, lambda g: (g * x,) ... >>> print(f(3.)) 9.0 >>> print(jax.grad(f)(3.)) 3.0 An example with a function on two arguments, so that the VJP function must return a tuple of length two: >>> @jax.custom_gradient ... def f(x, y): ... return x * y, lambda g: (g * y, g * x) ... >>> print(f(3., 4.)) 12.0 >>> print(jax.grad(f, argnums=(0, 1))(3., 4.)) (Array(4., dtype=float32, weak_type=True), Array(3., dtype=float32, weak_type=True)) """ @custom_vjp def wrapped_fun(*args, **kwargs): ans, _ = fun(*args, **kwargs) return ans def fwd(*args, **kwargs): ans, rule = fun(*args, **kwargs) ans_flat, out_tree = tree_flatten((ans,)) rule, in_tree = flatten_fun_nokwargs(lu.wrap_init(rule), out_tree) ans_avals = [core.get_aval(x).at_least_vspace() for x in ans_flat] jaxpr, _, consts, () = pe.trace_to_jaxpr_dynamic(rule, ans_avals) return ans, Residuals(jaxpr, in_tree(), out_tree, consts) def bwd(res, cts): jaxpr, in_tree, out_tree, consts = res cts_flat, out_tree_ = tree_flatten((cts,)) if out_tree != out_tree_: raise TypeError(f'{out_tree}\n!=\n{out_tree_}') cts_out = core.eval_jaxpr(jaxpr, consts, *cts_flat) cts_out = tree_unflatten(in_tree, cts_out) if treedef_is_leaf(in_tree): cts_out = (cts_out,) return cts_out wrapped_fun.defvjp(fwd, bwd) return wrapped_fun
@register_pytree_node_class class Residuals: def __init__(self, jaxpr, in_tree, out_tree, consts): self.jaxpr = jaxpr self.in_tree = in_tree self.out_tree = out_tree self.consts = consts def __iter__(self): return iter((self.jaxpr, self.in_tree, self.out_tree, self.consts)) def tree_flatten(self): return self.consts, (self.jaxpr, self.in_tree, self.out_tree) @classmethod def tree_unflatten(cls, aux, consts): jaxpr, in_tree, out_tree = aux return cls(jaxpr, in_tree, out_tree, consts)
[docs] def closure_convert(fun: Callable, *example_args) -> tuple[Callable, list[Any]]: """Closure conversion utility, for use with higher-order custom derivatives. To define custom derivatives such as with ``jax.custom_vjp(f)``, the target function ``f`` must take, as formal arguments, all values involved in differentiation. If ``f`` is a higher-order function, in that it accepts as an argument a Python function ``g``, then values stored away in ``g``'s closure will not be visible to the custom derivative rules, and attempts at AD involving these values will fail. One way around this is to convert the closure by extracting these values, and to pass them as explicit formal arguments across the custom derivative boundary. This utility carries out that conversion. More precisely, it closure-converts the function ``fun`` specialized to the types of the arguments given in ``example_args``. When we refer here to "values in the closure" of ``fun``, we do not mean the values that are captured by Python directly when ``fun`` is defined (e.g. the Python objects in ``fun.__closure__``, if the attribute exists). Rather, we mean values encountered during the execution of ``fun`` on ``example_args`` that determine its output. This may include, for instance, arrays captured transitively in Python closures, i.e. in the Python closure of functions called by ``fun``, the closures of the functions that they call, and so forth. The function ``fun`` must be a pure function. Example usage:: def minimize(objective_fn, x0): converted_fn, aux_args = closure_convert(objective_fn, x0) return _minimize(converted_fn, x0, *aux_args) @partial(custom_vjp, nondiff_argnums=(0,)) def _minimize(objective_fn, x0, *args): z = objective_fn(x0, *args) # ... find minimizer x_opt ... return x_opt def fwd(objective_fn, x0, *args): y = _minimize(objective_fn, x0, *args) return y, (y, args) def rev(objective_fn, res, g): y, args = res y_bar = g # ... custom reverse-mode AD ... return x0_bar, *args_bars _minimize.defvjp(fwd, rev) Args: fun: Python callable to be converted. Must be a pure function. example_args: Arrays, scalars, or (nested) standard Python containers (tuples, lists, dicts, namedtuples, i.e., pytrees) thereof, used to determine the types of the formal arguments to ``fun``. This type-specialized form of ``fun`` is the function that will be closure converted. Returns: A pair comprising (i) a Python callable, accepting the same arguments as ``fun`` followed by arguments corresponding to the values hoisted from its closure, and (ii) a list of values hoisted from the closure. """ flat_args, in_tree = tree_flatten(example_args) in_avals = tuple(map(abstractify, flat_args)) if config.check_tracer_leaks.value: return _closure_convert_for_avals.__wrapped__(fun, in_tree, in_avals) else: return _closure_convert_for_avals(fun, in_tree, in_avals)
def _maybe_perturbed(x: Any) -> bool: # False if x can't represent an AD-perturbed value (i.e. a value # with a nontrivial tangent attached), up to heuristics, and True otherwise. # See https://github.com/google/jax/issues/6415 for motivation. x = core.full_lower(x) if not isinstance(x, core.Tracer): # If x is not a Tracer, it can't be perturbed. return False elif isinstance(x, pe.DynamicJaxprTracer): # If x is a DynamicJaxprTracer then we're staging out; differentiation could # happen later, but some types always have trivial tangents. vspace = x.aval.at_least_vspace() return not (vspace is core.abstract_token or getattr(vspace, 'dtype', None) == dtypes.float0) elif not isinstance(x, ad.JVPTracer): # If x is not a JVPTracer, recursively check its contents. return any(_maybe_perturbed(attr) for name, attr in x._contents()) else: return True # We can't be sure! @cache() def _closure_convert_for_avals(fun, in_tree, in_avals): wrapped_fun, out_tree = flatten_fun_nokwargs(lu.wrap_init(fun), in_tree) jaxpr, out_pvals, consts, () = pe.trace_to_jaxpr_dynamic(wrapped_fun, in_avals) out_tree = out_tree() (closure_consts, hoisted_consts), merge = partition_list(_maybe_perturbed, consts) num_consts = len(hoisted_consts) def converted_fun(*args_hconsts): num_args = len(args_hconsts) - num_consts args, hoisted_consts = split_list(args_hconsts, [num_args]) consts = merge(closure_consts, hoisted_consts) all_args, in_tree2 = tree_flatten(tuple(args)) assert in_tree == in_tree2 out_flat = core.eval_jaxpr(jaxpr, consts, *all_args) return tree_unflatten(out_tree, out_flat) return converted_fun, hoisted_consts def partition_list(choice, lst): out = [], [] which = [out[choice(elt)].append(elt) or choice(elt) for elt in lst] def merge(l1, l2): i1, i2 = iter(l1), iter(l2) return [next(i2 if snd else i1) for snd in which] return out, merge def abstractify(x): return core.raise_to_shaped(core.get_aval(x)) ### Custom transposition def linear_call(fun: Callable, fun_transpose: Callable, residual_args, linear_args): """Call a linear function, with a custom implementation for its transpose. The `Haskell-like type signatures`_ of ``fun`` and ``fun_transpose`` are: .. code-block:: haskell fun :: r -> a -o b fun_transpose :: r -> b -o a where the ``-o`` arrow indicates a linear function, ``r`` is the residual input type and ``a`` is the linear input type. The functions ``fun`` and ``fun_transpose`` are coupled as transposes of one another. Specifically, the transpose of a ``linear_call`` primitive is another ``linear_call`` to ``fun_transpose``, with ``fun`` as its custom transposition. For example: >>> def f(r, x): ... return x / r >>> def t(r, t): ... return t / r >>> def div_add(x, denom): ... return x + linear_call(f, t, denom, x) >>> def transpose(f, x_example): ... def transposed(y): ... x, = jax.linear_transpose(f, x_example)(y) ... return x ... return transposed >>> div_add(9., 3.) Array(12., dtype=float32, weak_type=True) >>> transpose(partial(div_add, denom=3.), 1.)(18.) # custom Array(24., dtype=float32, weak_type=True) >>> transpose(lambda x: x + x / 3., 1.)(18.) # reference Array(24., dtype=float32, weak_type=True) The above definition of ``f`` illustrates the purpose of a residual argument: division is linear in one of its inputs (the dividend ``x``) but not the other (the divisor ``r``). As another example: >>> def custom_id(x): ... def f(_, x): return x ... def t(_, t): return 7. ... return linear_call(f, t, (), x) >>> custom_id(1.) 1.0 >>> transpose(custom_id, 1.)(1.) 7.0 >>> transpose(transpose(custom_id, 1.), 1.)(1.) 1.0 >>> transpose(transpose(transpose(custom_id, 1.), 1.), 1.)(1.) 7.0 Args: fun: a Python callable specifying a linear function. It should take two arguments: one of "residual" inputs (type ``r``), i.e. inputs in which the function is not necessarily linear, and one of "linear" inputs (type ``a``). It should return output whose components are linear in the linear input (type ``b``). fun_transpose: a Python callable specifying a structurally linear function that is the transpose of ``fun`` with respect to its linear inputs. Its first argument is the same residual inputs (``r``) as ``fun``. Its second argument is of type ``b``. Finally, its output is of type ``a`` and each of its component are linear in its second argument (the ``b`` inputs). residual_args: Argument in which ``fun`` and ``fun_transpose`` are not necessarily linear. Not involved in transposition. linear_args: Argument in which ``fun`` and ``fun_transpose`` are linear and with respect to which the two are transposes. Returns: The call result, i.e. ``fun(residual_args, linear_args)``. .. _Haskell-like type signatures: https://wiki.haskell.org/Type_signature """ operands_res, res_tree = tree_flatten(residual_args) operands_lin, lin_tree = tree_flatten(linear_args) f_in_tree = treedef_tuple((res_tree, lin_tree)) f, out_tree = flatten_fun_nokwargs(lu.wrap_init(fun), f_in_tree) res_avals = map(abstractify, operands_res) lin_avals = map(abstractify, operands_lin) f_jaxpr, f_consts = _initial_style_jaxpr(f, (*res_avals, *lin_avals)) f_jaxpr = _close_jaxpr(f_jaxpr) out_avals = map(core.raise_to_shaped, f_jaxpr.out_avals) t_in_tree = treedef_tuple((res_tree, out_tree())) t, t_out_tree = flatten_fun_nokwargs(lu.wrap_init(fun_transpose), t_in_tree) t_jaxpr, t_consts = _initial_style_jaxpr(t, (*res_avals, *out_avals)) t_jaxpr = _close_jaxpr(t_jaxpr) if t_out_tree() != lin_tree: raise TypeError( 'transpose output pytree structure must match that of linear inputs, ' f'got output structure {t_out_tree()} ' f'and input structure {lin_tree}.') out = linear_call_p.bind(*f_consts, *t_consts, *operands_res, *operands_lin, callee=f_jaxpr, transpose=t_jaxpr, num_callee_consts=len(f_consts), num_transpose_consts=len(t_consts), num_res=len(operands_res)) return tree_unflatten(out_tree(), out) def _linear_call_impl(*args, callee, transpose, num_callee_consts, num_transpose_consts, num_res): del transpose consts, _, operands_res, operands_lin = split_list( args, [num_callee_consts, num_transpose_consts, num_res]) return core.eval_jaxpr(callee.jaxpr, (), *consts, *operands_res, *operands_lin) def _linear_call_transpose_rule(cts, *args, callee, transpose, num_callee_consts, num_transpose_consts, num_res): f_consts, t_consts, operands_res, operands_lin = split_list( args, [num_callee_consts, num_transpose_consts, num_res]) _, _, cts_avals = split_list( transpose.in_avals, [num_transpose_consts, num_res]) assert all(ad.is_undefined_primal(x) for x in operands_lin) assert all(not ad.is_undefined_primal(x) for x in operands_res) cts = [zeros_like_aval(a) if type(ct) is Zero else ct for ct, a in zip(cts, cts_avals)] cts_out = linear_call_p.bind(*t_consts, *f_consts, *operands_res, *cts, callee=transpose, transpose=callee, num_callee_consts=len(t_consts), num_transpose_consts=len(f_consts), num_res=len(operands_res)) return [None] * (num_callee_consts + num_transpose_consts + num_res) + cts_out def _linear_call_abstract_eval(*args, **kwargs): return map(core.raise_to_shaped, kwargs['callee'].out_avals) linear_call_p = core.Primitive('linear_call') linear_call_p.multiple_results = True linear_call_p.def_impl(_linear_call_impl) linear_call_p.def_abstract_eval(_linear_call_abstract_eval) ad.primitive_transposes[linear_call_p] = _linear_call_transpose_rule xla.register_initial_style_primitive(linear_call_p) mlir.register_lowering(linear_call_p, mlir.lower_fun( _linear_call_impl, multiple_results=True)) # A stageable primitive that fails when evaluated unreachable_p: core.Primitive = core.Primitive('unreachable') unreachable_p.multiple_results = True def unreachable_impl(*_, out_avals, exc_type, message): del out_avals raise exc_type(message) # Evaluation raises an exception unreachable_p.def_impl(unreachable_impl) # Translation raises an exception # TODO(frostig,mattjj): We have no good way to translate a function # that errs. Since MLIR lowering over-approximates concrete evaluation, # we err on MLIR lowering for the time being. mlir.register_lowering(unreachable_p, unreachable_impl) # Abstract evaluation proceeds without issue, to allow for staging unreachable_p.def_abstract_eval(lambda *_, out_avals, **__: out_avals) def unreachable(*args, out_avals=None, exc_type=TypeError, message='unreachable'): """Fail when evaluated concretely (but allow for staging). This function allows one to assert an impossibility of evaluation. It can be used to guarantee that evaluation does not "reach" a certain point in the sense that it does not execute, but it can nonetheless be staged out by JAX without error. Args: *args: The arbitrary pytree of arguments to the function. out_avals: Optional specification of the output types of this function invocation from the point of view of staging. If ``None``, these are chosen as equal to types of input arguments. exc_type: Optional constructor for the Python exception raised if evaluated. message: Optional string message for the Python exception raised if evaluated. """ if out_avals is None: out_avals = tree_map(core.get_aval, args) args_flat, in_tree = tree_flatten(args) out_avals_flat, out_tree = tree_flatten(out_avals) out = unreachable_p.bind(*args_flat, out_avals=out_avals_flat, exc_type=exc_type, message=message) return tree_unflatten(out_tree, out) disallow_jvp = partial( unreachable, exc_type=TypeError, message="can't apply forward-mode autodiff (jvp) to a custom_vjp function.") def custom_vjp_by_custom_transpose(fun, fwd, bwd): fun = custom_jvp(fun) @fun.defjvp def jvp(primals, tangents): outs, residuals = fwd(*primals) tan_out_types = tree_map(lambda o: core.get_aval(o).at_least_vspace(), outs) tan_fn = custom_transpose(partial(disallow_jvp, out_avals=tan_out_types)) tan_fn.def_transpose(bwd) return outs, tan_fn(tan_out_types, residuals, tangents) return fun # TODO(mattjj): remove these stubs, which exist to avoid breaking internal users custom_jvp_call_jaxpr_p = core.Primitive("custom_jvp_call_jaxpr")