jax.scipy.signal.correlate

jax.scipy.signal.correlate(in1, in2, mode='full', method='auto', precision=None)[source]

Cross-correlate two N-dimensional arrays.

LAX-backend implementation of correlate().

Original docstring below.

Cross-correlate in1 and in2, with the output size determined by the mode argument.

Parameters
  • in1 (array_like) – First input.

  • in2 (array_like) – Second input. Should have the same number of dimensions as in1.

  • mode (str {'full', 'valid', 'same'}, optional) –

    A string indicating the size of the output:

    full

    The output is the full discrete linear cross-correlation of the inputs. (Default)

    valid

    The output consists only of those elements that do not rely on the zero-padding. In ‘valid’ mode, either in1 or in2 must be at least as large as the other in every dimension.

    same

    The output is the same size as in1, centered with respect to the ‘full’ output.

  • method (str {'auto', 'direct', 'fft'}, optional) –

    A string indicating which method to use to calculate the correlation.

    direct

    The correlation is determined directly from sums, the definition of correlation.

    fft

    The Fast Fourier Transform is used to perform the correlation more quickly (only available for numerical arrays.)

    auto

    Automatically chooses direct or Fourier method based on an estimate of which is faster (default). See convolve Notes for more detail.

Returns

correlate – An N-dimensional array containing a subset of the discrete linear cross-correlation of in1 with in2.

Return type

array