jax.scipy.signal.convolve#
- jax.scipy.signal.convolve(in1, in2, mode='full', method='auto', precision=None)[source]#
Convolution of two N-dimensional arrays.
JAX implementation of
scipy.signal.convolve()
.- Parameters:
in1 (Array) – left-hand input to the convolution.
in2 (Array) – right-hand input to the convolution. Must have
in1.ndim == in2.ndim
.mode (str) –
controls the size of the output. Available operations are:
"full"
: (default) output the full convolution of the inputs."same"
: return a centered portion of the"full"
output which is the same size asin1
."valid"
: return the portion of the"full"
output which do not depend on padding at the array edges.
method (str) –
controls the computation method. Options are
"auto"
: (default) always uses the"direct"
method."direct"
: lower tojax.lax.conv_general_dilated()
."fft"
: compute the result via a fast Fourier transform.
precision (PrecisionLike | None) – Specify the precision of the computation. Refer to
jax.lax.Precision
for a description of available values.
- Returns:
Array containing the convolved result.
- Return type:
See also
jax.numpy.convolve()
: 1D convolutionjax.scipy.signal.convolve2d()
: 2D convolutionjax.scipy.signal.correlate()
: ND correlation
Examples
A few 1D convolution examples:
>>> x = jnp.array([1, 2, 3, 2, 1]) >>> y = jnp.array([1, 1, 1])
Full convolution uses implicit zero-padding at the edges:
>>> jax.scipy.signal.convolve(x, y, mode='full') Array([1., 3., 6., 7., 6., 3., 1.], dtype=float32)
Specifying
mode = 'same'
returns a centered convolution the same size as the first input:>>> jax.scipy.signal.convolve(x, y, mode='same') Array([3., 6., 7., 6., 3.], dtype=float32)
Specifying
mode = 'valid'
returns only the portion where the two arrays fully overlap:>>> jax.scipy.signal.convolve(x, y, mode='valid') Array([6., 7., 6.], dtype=float32)