jax.scipy.optimize.OptimizeResults#
- class jax.scipy.optimize.OptimizeResults(x: Array, success: Union[bool, Array], status: Union[int, Array], fun: Array, jac: Array, hess_inv: Optional[Array], nfev: Union[int, Array], njev: Union[int, Array], nit: Union[int, Array])[source]#
Object holding optimization results.
- Parameters:
x – final solution.
success –
True
if optimization succeeded.status – integer solver specific return code. 0 means converged (nominal), 1=max BFGS iters reached, 3=zoom failed, 4=saddle point reached, 5=max line search iters reached, -1=undefined
fun – final function value.
jac – final jacobian array.
hess_inv – final inverse Hessian estimate.
nfev – integer number of function calls used.
njev – integer number of gradient evaluations.
nit – integer number of iterations of the optimization algorithm.
- __init__()#
Methods
__init__
()count
(value, /)Return number of occurrences of value.
index
(value[, start, stop])Return first index of value.
Attributes
fun
Alias for field number 3
hess_inv
Alias for field number 5
jac
Alias for field number 4
nfev
Alias for field number 6
nit
Alias for field number 8
njev
Alias for field number 7
status
Alias for field number 2
success
Alias for field number 1
x
Alias for field number 0