jax.scipy.linalg.hessenberg#
- jax.scipy.linalg.hessenberg(a, *, calc_q=False, overwrite_a=False, check_finite=True)[source]#
Compute Hessenberg form of a matrix.
LAX-backend implementation of
scipy.linalg._decomp.hessenberg()
.Does not support the Scipy argument
check_finite=True
, because compiled JAX code cannot perform checks of array values at runtime.Does not support the Scipy argument
overwrite_*=True
.Original docstring below.
The Hessenberg decomposition is:
A = Q H Q^H
where Q is unitary/orthogonal and H has only zero elements below the first sub-diagonal.
- Parameters:
a ((M, M) array_like) – Matrix to bring into Hessenberg form.
calc_q (bool, optional) – Whether to compute the transformation matrix. Default is False.
overwrite_a (bool, optional) – Whether to overwrite a; may improve performance. Default is False.
check_finite (bool, optional) – Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Return type:
- Returns:
H ((M, M) ndarray) – Hessenberg form of a.
Q ((M, M) ndarray) – Unitary/orthogonal similarity transformation matrix
A = Q H Q^H
. Only returned ifcalc_q=True
.