jax.scipy.linalg.funm#
- jax.scipy.linalg.funm(A, func, disp=True)[source]#
Evaluate a matrix function specified by a callable.
LAX-backend implementation of
scipy.linalg._matfuncs.funm()
.The array returned by
jax.scipy.linalg.funm()
may differ in dtype from the array returned by py:func:scipy.linalg.funm. Specifically, in cases where all imaginary parts of the array values are close to zero, the SciPy function may return a real-valued array, whereas the JAX implementation will return a complex-valued array.Additionally, unlike the SciPy implementation, when
disp=True
no warning will be printed if the error in the array output is estimated to be large.Original docstring below.
Returns the value of matrix-valued function
f
at A. The functionf
is an extension of the scalar-valued function func to matrices.- Parameters
A ((N, N) array_like) – Matrix at which to evaluate the function
func (callable) – Callable object that evaluates a scalar function f. Must be vectorized (eg. using vectorize).
disp (bool, optional) – Print warning if error in the result is estimated large instead of returning estimated error. (Default: True)
- Return type
- Returns
funm ((N, N) ndarray) – Value of the matrix function specified by func evaluated at A
errest (float) – (if disp == False)
1-norm of the estimated error, ||err||_1 / ||A||_1
References
- 1
Gene H. Golub, Charles F. van Loan, Matrix Computations 4th ed.