jax.random.loggamma#
- jax.random.loggamma(key, a, shape=None, dtype=<class 'numpy.float64'>)[source]#
Sample log-gamma random values with given shape and float dtype.
This function is implemented such that the following will hold for a dtype-appropriate tolerance:
np.testing.assert_allclose(jnp.exp(loggamma(*args)), gamma(*args), rtol=rtol)
The benefit of log-gamma is that for samples very close to zero (which occur frequently when a << 1) sampling in log space provides better precision.
- Parameters
key (
Union
[Array
,PRNGKeyArray
]) – a PRNG key used as the random key.a (
Union
[Array
,ndarray
,bool_
,number
,bool
,int
,float
,complex
]) – a float or array of floats broadcast-compatible withshape
representing the parameter of the distribution.shape (
Optional
[Sequence
[int
]]) – optional, a tuple of nonnegative integers specifying the result shape. Must be broadcast-compatible witha
. The default (None) produces a result shape equal toa.shape
.dtype (
Union
[Any
,str
,dtype
,SupportsDType
]) – optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32).
- Return type
- Returns
A random array with the specified dtype and with shape given by
shape
ifshape
is not None, or else bya.shape
.
See also
gamma : standard gamma sampler.