Change Log

These are the release notes for JAX.

jaxlib 0.1.51 (July 2, 2020)

  • Update XLA.

  • Add new runtime support for host_callback.

jax 0.1.72 (June 28, 2020)

jax 0.1.71 (June 25, 2020)

  • GitHub commits.

  • The minimum jaxlib version is now 0.1.48.

  • Bug fixes:

    • Allow jax.experimental.ode.odeint dynamics functions to close over values with respect to which we’re differentiating #3562.

jaxlib 0.1.50 (June 25, 2020)

  • Add support for CUDA 11.0.

  • Drop support for CUDA 9.2 (we only maintain support for the last four CUDA versions.)

  • Update XLA.

jaxlib 0.1.49 (June 19, 2020)

jaxlib 0.1.48 (June 12, 2020)

  • New features:

    • Adds support for fast traceback collection.

    • Adds preliminary support for on-device heap profiling.

    • Implements np.nextafter for bfloat16 types.

    • Complex128 support for FFTs on CPU and GPU.

  • Bugfixes:

    • Improved float64 tanh accuracy on GPU.

    • float64 scatters on GPU are much faster.

    • Complex matrix multiplication on CPU should be much faster.

    • Stable sorts on CPU should actually be stable now.

    • Concurrency bug fix in CPU backend.

jax 0.1.70 (June 8, 2020)

  • GitHub commits.

  • New features:

    • lax.switch introduces indexed conditionals with multiple branches, together with a generalization of the cond primitive #3318.

jax 0.1.69 (June 3, 2020)

jax 0.1.68 (May 21, 2020)

  • GitHub commits.

  • New features:

    • lax.cond supports a single-operand form, taken as the argument to both branches #2993.

  • Notable changes:

    • The format of the transforms keyword for the lax.experimental.host_callback.id_tap primitive has changed #3132.

jax 0.1.67 (May 12, 2020)

  • GitHub commits.

  • New features:

    • Support for reduction over subsets of a pmapped axis using axis_index_groups #2382.

    • Experimental support for printing and calling host-side Python function from compiled code. See id_print and id_tap (#3006).

  • Notable changes:

    • The visibility of names exported from :py:module:`jax.numpy` has been tightened. This may break code that was making use of names that were previously exported accidentally.

jaxlib 0.1.47 (May 8, 2020)

  • Fixes crash for outfeed.

jax 0.1.66 (May 5, 2020)

jaxlib 0.1.46 (May 5, 2020)

  • Fixes crash for linear algebra functions on Mac OS X (#432).

  • Fixes an illegal instruction crash caused by using AVX512 instructions when an operating system or hypervisor disabled them (#2906).

jax 0.1.65 (April 30, 2020)

  • GitHub commits.

  • New features:

    • Differentiation of determinants of singular matrices #2809.

  • Bug fixes:

    • Fix odeint() differentiation with respect to time of ODEs with time-dependent dynamics #2817, also add ODE CI testing.

    • Fix lax_linalg.qr() differentiation #2867.

jaxlib 0.1.45 (April 21, 2020)

jax 0.1.64 (April 21, 2020)

jaxlib 0.1.44 (April 16, 2020)

  • Fixes a bug where if multiple GPUs of different models were present, JAX would only compile programs suitable for the first GPU.

  • Bugfix for batch_group_count convolutions.

  • Added precompiled SASS for more GPU versions to avoid startup PTX compilation hang.

jax 0.1.63 (April 12, 2020)

  • GitHub commits.

  • Added jax.custom_jvp and jax.custom_vjp from #2026, see the tutorial notebook. Deprecated jax.custom_transforms and removed it from the docs (though it still works).

  • Add #2566.

  • Changed how Tracers are printed to show more useful information for debugging #2591.

  • Made jax.numpy.isclose handle nan and inf correctly #2501.

  • Added several new rules for jax.experimental.jet #2537.

  • Fixed jax.experimental.stax.BatchNorm when scale/center isn’t provided.

  • Fix some missing cases of broadcasting in jax.numpy.einsum #2512.

  • Implement jax.numpy.cumsum and jax.numpy.cumprod in terms of a parallel prefix scan #2596 and make reduce_prod differentiable to arbitray order #2597.

  • Add batch_group_count to conv_general_dilated #2635.

  • Add docstring for test_util.check_grads #2656.

  • Add callback_transform #2665.

  • Implement rollaxis, convolve/correlate 1d & 2d, copysign, trunc, roots, and quantile/percentile interpolation options.

jaxlib 0.1.43 (March 31, 2020)

  • Fixed a performance regression for Resnet-50 on GPU.

jax 0.1.62 (March 21, 2020)

  • GitHub commits.

  • JAX has dropped support for Python 3.5. Please upgrade to Python 3.6 or newer.

  • Removed the internal function lax._safe_mul, which implemented the convention 0. * nan == 0.. This change means some programs when differentiated will produce nans when they previously produced correct values, though it ensures nans rather than silently incorrect results are produced for other programs. See #2447 and #1052 for details.

  • Added an all_gather parallel convenience function.

  • More type annotations in core code.

jaxlib 0.1.42 (March 19, 2020)

  • jaxlib 0.1.41 broke cloud TPU support due to an API incompatibility. This release fixes it again.

  • JAX has dropped support for Python 3.5. Please upgrade to Python 3.6 or newer.

jax 0.1.61 (March 17, 2020)

  • GitHub commits.

  • Fixes Python 3.5 support. This will be the last JAX or jaxlib release that supports Python 3.5.

jax 0.1.60 (March 17, 2020)

  • GitHub commits.

  • New features:

    • jax.pmap() has static_broadcast_argnums argument which allows the user to specify arguments that should be treated as compile-time constants and should be broadcasted to all devices. It works analogously to static_argnums in jax.jit().

    • Improved error messages for when tracers are mistakenly saved in global state.

    • Added jax.nn.one_hot() utility function.

    • Added :py:module:`jax.experimental.jet` for exponentially faster higher-order automatic differentiation.

    • Added more correctness checking to arguments of jax.lax.broadcast_in_dim().

  • The minimum jaxlib version is now 0.1.41.

jaxlib 0.1.40 (March 4, 2020)

  • Adds experimental support in Jaxlib for TensorFlow profiler, which allows tracing of CPU and GPU computations from TensorBoard.

  • Includes prototype support for multihost GPU computations that communicate via NCCL.

  • Improves performance of NCCL collectives on GPU.

  • Adds TopK, CustomCallWithoutLayout, CustomCallWithLayout, IGammaGradA and RandomGamma implementations.

  • Supports device assignments known at XLA compilation time.

jax 0.1.59 (February 11, 2020)

  • GitHub commits.

  • Breaking changes

    • The minimum jaxlib version is now 0.1.38.

    • Simplified Jaxpr by removing the Jaxpr.freevars and Jaxpr.bound_subjaxprs. The call primitives (xla_call, xla_pmap, sharded_call, and remat_call) get a new parameter call_jaxpr with a fully-closed (no constvars) jaxpr. Also, added a new field call_primitive to primitives.

  • New features:

    • Reverse-mode automatic differentiation (e.g. grad) of lax.cond, making it now differentiable in both modes (

    • JAX now supports DLPack, which allows sharing CPU and GPU arrays in a zero-copy way with other libraries, such as PyTorch.

    • JAX GPU DeviceArrays now support __cuda_array_interface__, which is another zero-copy protocol for sharing GPU arrays with other libraries such as CuPy and Numba.

    • JAX CPU device buffers now implement the Python buffer protocol, which allows zero-copy buffer sharing between JAX and NumPy.

    • Added JAX_SKIP_SLOW_TESTS environment variable to skip tests known as slow.

jaxlib 0.1.39 (February 11, 2020)

  • Updates XLA.

jaxlib 0.1.38 (January 29, 2020)

  • CUDA 9.0 is no longer supported.

  • CUDA 10.2 wheels are now built by default.

jax 0.1.58 (January 28, 2020)

Notable bug fixes

  • With the Python 3 upgrade, JAX no longer depends on fastcache, which should help with installation.