jax.numpy.sometrueΒΆ

jax.numpy.sometrue(a, axis=None, dtype=None, out=None, keepdims=False)ΒΆ

Test whether any array element along a given axis evaluates to True.

LAX-backend implementation of any(). Original docstring below.

Returns single boolean unless axis is not None

Parameters
  • a (array_like) – Input array or object that can be converted to an array.

  • axis (None or int or tuple of ints, optional) – Axis or axes along which a logical OR reduction is performed. The default (axis=None) is to perform a logical OR over all the dimensions of the input array. axis may be negative, in which case it counts from the last to the first axis.

  • out (ndarray, optional) – Alternate output array in which to place the result. It must have the same shape as the expected output and its type is preserved (e.g., if it is of type float, then it will remain so, returning 1.0 for True and 0.0 for False, regardless of the type of a). See ufuncs-output-type for more details.

  • keepdims (bool, optional) – If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.

Returns

any – A new boolean or ndarray is returned unless out is specified, in which case a reference to out is returned.

Return type

bool or ndarray

See also

ndarray.any()

equivalent method

all()

Test whether all elements along a given axis evaluate to True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero.

Examples

>>> np.any([[True, False], [True, True]])
True
>>> np.any([[True, False], [False, False]], axis=0)
array([ True, False])
>>> np.any([-1, 0, 5])
True
>>> np.any(np.nan)
True
>>> o=np.array(False)
>>> z=np.any([-1, 4, 5], out=o)
>>> z, o
(array(True), array(True))
>>> # Check now that z is a reference to o
>>> z is o
True
>>> id(z), id(o) # identity of z and o              
(191614240, 191614240)