# jax.numpy.polyderΒΆ

jax.numpy.polyder(p, m=1)[source]ΒΆ

Return the derivative of the specified order of a polynomial.

LAX-backend implementation of polyder(). Original docstring below.

Parameters
• p (poly1d or sequence) β Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see poly1d.

• m (int, optional) β Order of differentiation (default: 1)

Returns

der β A new polynomial representing the derivative.

Return type

poly1d

polyint()

Anti-derivative of a polynomial.

poly1d()

Class for one-dimensional polynomials.

Examples

The derivative of the polynomial $$x^3 + x^2 + x^1 + 1$$ is:

>>> p = np.poly1d([1,1,1,1])
>>> p2 = np.polyder(p)
>>> p2
poly1d([3, 2, 1])


which evaluates to:

>>> p2(2.)
17.0


We can verify this, approximating the derivative with (f(x + h) - f(x))/h:

>>> (p(2. + 0.001) - p(2.)) / 0.001
17.007000999997857


The fourth-order derivative of a 3rd-order polynomial is zero:

>>> np.polyder(p, 2)
poly1d([6, 2])
>>> np.polyder(p, 3)
poly1d([6])
>>> np.polyder(p, 4)
poly1d([0.])